1) Дано: ABCD - трапеция,∠А=90°, ∠С-∠В=48°. Найти: ∠D, ∠С, ∠В Решение: 1.Рассмотрим трапецию АВСD. ВА∫∫CD(по опр. трапеции) ⇒ сумма односторонних углов равна 180°(по св-ву парал. прям. и сек.). Пусть секущей будет DA, тогда ∠А+∠D=180° ⇒ ∠D=180°-90°=90°. Возьмем СВ как секущую, тогда ∠С+∠В=180°(по св-ву). 2. Получим систему: ∠С+∠В=180° ∠С-∠В=48° Такое возможно, только если один из углов равен 114, а второй 66. (Найти можно методом подбора). Тогда ∠С=114°(т.к.он тупой), а ∠В=66°(т.к.он острый). ответ: 90°, 114°, 66° 2) Дано: ABCD - прямоугл., ∠АВО=36° Найти: ∠АОD Решение:1.Рассмотрим BD и АС. Они пересекаются в точке О, при этом делятся пополам(по св-ву параллелогр.). Также диагонали равны(по св-ву прямоуг.)⇒ВO=ОА. 2.Рассмотрим ΔВОА: ВО=ОА ⇒ ΔВОА - равнобедр.(по опр.) ⇒ ∠ОВА=∠ВАО=36°(по св-ву равноб. Δ). По теореме о сумме углов треугольника найдем ∠ВОА: 180-36-36=108°. 3. ∠ВОА смежен с ∠АОD. То есть их сумма равна 180(по св-ву) ⇒ ∠AOD=180-108=72° ответ: 72°
трапеция АВСД, АВ=СД, уголА=уголД, уголВ=уголС, ВС=18, АД=50, центр О-пересечение биссектрис углов трапеции, ВМ-прямая проходящая через вершину , центр О на АД =биссектриса угла В, угол АВМ=уголМВС=1/2уголВ, уголМВС=уголАМВ как внутренние разносторонние=уголАВМ, треугольник АВМ равнобедренный, АВ=АМ,
в трапецию можно вписать окружность если сумма оснований=сумма боковых сторон, ВС+АД=АВ+СД, 18+50=2АВ, АВ=СД=34=АМ, проводим высоты ВН и СК на АД, НВСК-прямоугольник ВС=НК=18, треугольник АВН=треугольник КСД как прямоугольные по гипотенузе и острому углу, АН=КД=(АД-НК)/2=(50-18)/2=16, треугольник АВН, ВН-высота трапеции и треугольника АВМ=корень(АВ в квадрате-АН в квадрате)=корень(1156-256)=30,
Найти: ∠D, ∠С, ∠В
Решение: 1.Рассмотрим трапецию АВСD. ВА∫∫CD(по опр. трапеции) ⇒ сумма односторонних углов равна 180°(по св-ву парал. прям. и сек.). Пусть секущей будет DA, тогда ∠А+∠D=180° ⇒ ∠D=180°-90°=90°. Возьмем СВ как секущую, тогда ∠С+∠В=180°(по св-ву).
2. Получим систему:
∠С+∠В=180°
∠С-∠В=48°
Такое возможно, только если один из углов равен 114, а второй 66. (Найти можно методом подбора). Тогда ∠С=114°(т.к.он тупой), а ∠В=66°(т.к.он острый).
ответ: 90°, 114°, 66°
2) Дано: ABCD - прямоугл., ∠АВО=36°
Найти: ∠АОD
Решение:1.Рассмотрим BD и АС. Они пересекаются в точке О, при этом делятся пополам(по св-ву параллелогр.). Также диагонали равны(по св-ву прямоуг.)⇒ВO=ОА.
2.Рассмотрим ΔВОА: ВО=ОА ⇒ ΔВОА - равнобедр.(по опр.) ⇒ ∠ОВА=∠ВАО=36°(по св-ву равноб. Δ). По теореме о сумме углов треугольника найдем ∠ВОА: 180-36-36=108°.
3. ∠ВОА смежен с ∠АОD. То есть их сумма равна 180(по св-ву) ⇒ ∠AOD=180-108=72°
ответ: 72°
треугольникАВС, уголА=78, ВД и СЕ-высоты, треугольник АСЕ прямоугольный, уголАСЕ=90-уголА=90-78=12, треугольник ДОС прямоугольный, уголДОС=90-уголАСЕ=90-12=78, уголДОЕ=180-уголДОС=180-78=102
трапеция АВСД, АВ=СД, уголА=уголД, уголВ=уголС, ВС=18, АД=50, центр О-пересечение биссектрис углов трапеции, ВМ-прямая проходящая через вершину , центр О на АД =биссектриса угла В, угол АВМ=уголМВС=1/2уголВ, уголМВС=уголАМВ как внутренние разносторонние=уголАВМ, треугольник АВМ равнобедренный, АВ=АМ,
в трапецию можно вписать окружность если сумма оснований=сумма боковых сторон, ВС+АД=АВ+СД, 18+50=2АВ, АВ=СД=34=АМ, проводим высоты ВН и СК на АД, НВСК-прямоугольник ВС=НК=18, треугольник АВН=треугольник КСД как прямоугольные по гипотенузе и острому углу, АН=КД=(АД-НК)/2=(50-18)/2=16, треугольник АВН, ВН-высота трапеции и треугольника АВМ=корень(АВ в квадрате-АН в квадрате)=корень(1156-256)=30,
площадьАВСД=1/2*(ВС+АД)*ВН=1/2*(18+50)*30=1020
площадь АВМ=1/2АМ*ВН=1/2*34*30=510
площадьАВМ/площадьАВСД=510/1020=1/2