Предположим ромб АВСД. Раз это ромб значит все его стороны равны 13 дм. Пускай диагональ ВД=24 дм. Проведем еще диагональ АС (ее и будем искать). Диагонали ромба в точке пересечения делятся пополам и под прямым углом. Назовем точку пересечения диагоналей О. Итак ВО=ОД=12дм. Рассмотрим треугольник ВОС. Угол О =90 градусов, следовательно по теореме Пифагора находим катет ОС=корень квадратный из (ВС^2-ОВ^2)=корень квадратный из (169-144)=корень квадратный из 25 =5(дм). Поскольку АС тоже диагональ ромба, то АО=ОС=5 дм. АС=АО+ОС=5+5=10 (дм). ответ 10 дм
В прямоугольном треугольнике гипотенуза BC равна 20, катет AB равен 16. Найдите квадрат расстояния от вершины A до биссектрисы угла C.
Расстояние от точки до прямой измеряется перпендикуляром, проведенным от этой точки до прямой. Сделаем рисунок. Пусть биссектриса угла С будет СК. Биссектриса треугольника (любого) делит противоположную сторону в отношении длин прилежащих сторон. ⇒ АК:КВ=АС:ВС=12:20=3/5 ⇒АК=АВ:(3+5)*3 АК=6 Рассмотрим ⊿КАС КС - гипотенуза КС=√(АК²+АС²)=√180=6√5 АН можно найти из ⊿АНК. Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом высотой АК²=КН*КС 36=КН*6√5 КН=36:6√5=6:√5 АН²=АК²-КН² АН²=36-(36:5)=144/5=28,8 ответ: квадрат расстояния от вершины A до биссектрисы угла C равен 28,8
Расстояние от точки до прямой измеряется перпендикуляром, проведенным от этой точки до прямой.
Сделаем рисунок.
Пусть биссектриса угла С будет СК.
Биссектриса треугольника (любого) делит противоположную сторону в
отношении длин прилежащих сторон.
⇒ АК:КВ=АС:ВС=12:20=3/5
⇒АК=АВ:(3+5)*3
АК=6
Рассмотрим ⊿КАС
КС - гипотенуза
КС=√(АК²+АС²)=√180=6√5
АН можно найти из ⊿АНК.
Катет прямоугольного треугольника есть среднее пропорциональное
между гипотенузой и отрезком гипотенузы, заключенным между катетом высотой
АК²=КН*КС
36=КН*6√5
КН=36:6√5=6:√5
АН²=АК²-КН²
АН²=36-(36:5)=144/5=28,8
ответ: квадрат расстояния от вершины A до биссектрисы угла C равен 28,8