Пусть будет параллелограмм ABCD, где угол В - тупой. Опустим высоты ВМ на сторону AD и высоту ВК на сторону CD. Пусть ВМ=3, ВК=5. Угол МВК соответственно равен 30 градусов. Угол А равен углу С, потому что это противоположные углы параллелограмма, тогда угол АВМ = угол СВК. Пусть угол С равен х, а угол СВК = у, тогда по теореме о сумме углов треугольника х+у=90, тогда 2х+2у=180. Сумма углов В и С равна 180, потому что АВСD - параллелограмм, значит, Угол В + угол С = 180 = 2у+х+30=2у+2х, откуда следует, что х=30. Тогда треугольники ВСК и АВМ не просто прямоугольные, в них один острый угол равен 30 градусов, поэтому катеты против этих углов равны половине гипотенузы, значит,АВ=2ВМ=6, ВС=2ВК=10
Основание треугольника АВ соединяет точки (-х;3x^2) и (х;3x^2) длина аснования |2х| точка М лежит на середине стороны АС (или ВС) значит точка М лежит на средней линии треугольника АВС расстояние от прямой, содержащей основание AB, до точки М равно половине высоты треугольника и равно 4-y , где у - координата точек основания. искомая площадь вычисляется по формуле S(х) = АВ*h/2 = |2х*(4-3*х^2)| искомая площадь - максимальная из возможных - ищем локальный экстремум S`(x) =8-18*х^2=0 при х^2=8/18=4/9 и |x|=(2/3) S= |2х*(4-3*х^2)| = 2*(2/3)*(4-3*4/9) = 32/9 = 3,(5) ~ 3,6
Угол А равен углу С, потому что это противоположные углы параллелограмма, тогда угол АВМ = угол СВК.
Пусть угол С равен х, а угол СВК = у, тогда по теореме о сумме углов треугольника х+у=90, тогда 2х+2у=180. Сумма углов В и С равна 180, потому что АВСD - параллелограмм, значит, Угол В + угол С = 180 = 2у+х+30=2у+2х, откуда следует, что х=30. Тогда треугольники ВСК и АВМ не просто прямоугольные, в них один острый угол равен 30 градусов, поэтому катеты против этих углов равны половине гипотенузы, значит,АВ=2ВМ=6, ВС=2ВК=10
ответ: 6 и 10
длина аснования |2х|
точка М лежит на середине стороны АС (или ВС) значит точка М лежит на средней линии треугольника АВС расстояние от прямой, содержащей основание AB, до точки М равно половине высоты треугольника и равно 4-y , где у - координата точек основания.
искомая площадь вычисляется по формуле
S(х) = АВ*h/2 = |2х*(4-3*х^2)|
искомая площадь - максимальная из возможных - ищем локальный экстремум
S`(x) =8-18*х^2=0 при х^2=8/18=4/9 и |x|=(2/3)
S= |2х*(4-3*х^2)| = 2*(2/3)*(4-3*4/9) = 32/9 = 3,(5) ~ 3,6