Объем прямой призмы равен произведению площади основания на высоту. Решение данной задачи сводится к нахождению площади трапеции (основания) если известны её основания и боковые стороны.
Найдем высоту трапеции:
проводим высоты из вершин меньшего основания и обозначим её - х, тогда один отрезок на большем основании - обозначим у, а второй отрезок равен (32-7-у)=(25-у);
треугольники, образованные боковыми сторонами, отрезками большего основания и высотами прямоугольные;
по т. Пифагора:
х²=20²-у²
х²=15²-(25-у)²;
решая данную систему находим у=16, тогда высота - х=12 см;
площадь основания - 12*(7+32)/2=294 см², объем - V=294*2=588 см³.
Объяснение:
Объем прямой призмы равен произведению площади основания на высоту. Решение данной задачи сводится к нахождению площади трапеции (основания) если известны её основания и боковые стороны.
Найдем высоту трапеции:
проводим высоты из вершин меньшего основания и обозначим её - х, тогда один отрезок на большем основании - обозначим у, а второй отрезок равен (32-7-у)=(25-у);
треугольники, образованные боковыми сторонами, отрезками большего основания и высотами прямоугольные;
по т. Пифагора:
х²=20²-у²
х²=15²-(25-у)²;
решая данную систему находим у=16, тогда высота - х=12 см;
площадь основания - 12*(7+32)/2=294 см², объем - V=294*2=588 см³.
Объяснение:
Пусть с точки С опустили две наклонние на плоскость, в пересечении получили точки А и в
В результате имеем ДАВС, где /_С=90°
Опустим перпендикуляр с точки с на плоскость, получим точку Н Известно, что /_CAH=45° и /_СВН=30°, СВ=
Тогда из ДСНB /_H=90°, /_B=30°и CB=8 имеем
СН=4, как катет против угла 30°
Из ДСНА, где /_H=90° и /_A=45° следует, что и /_НСА=45° → ДСНА равнобедренний CH=HA=4
По теореме Пифагора СА=4√2
Из ∆АВС: /_C=90°, из условия, СВ=8,
CA=4√2
За теоремою Пифагора
ВА^2=СВ^2+СА^2=64+32=96
BA=4√6