1. Угол C = углу D (90 градусов образуются за счет AC и DF, по условию перпендикулярных CD)
2. Углы ABC и DBF равны, так как они вертикальные.
У подобных треугольников есть формула коэффициента подобия.
AС относится к FD так же, как и AB к FB
AC = 4 см (треугольник ABC прямоугольный, по теореме Пифагора квадрат AB равен квадрату AС + квадрату BC, следовательно 25-9 = 16, а корень из 16 это 4).
Точка пересечения биссектрис треугольника является центром окружности, вписанной в этот треугольник, а точка пересечения его серединных перпендикуляров — центром окружности, описанной около этого треугольника. Из теоремы о медиане равнобедренного треугольника следует, что только в равностороннем треугольнике биссектрисы углов треугольника совпадают с серединными перпендикулярами. Значит, центр окружности, вписанной в треугольник, совпадает с центром описанной около него окружности только для равностороннего треугольника
3) 8
Объяснение:
Треугольники ABC и FDB подобные (по двум углам)
1. Угол C = углу D (90 градусов образуются за счет AC и DF, по условию перпендикулярных CD)
2. Углы ABC и DBF равны, так как они вертикальные.
У подобных треугольников есть формула коэффициента подобия.
AС относится к FD так же, как и AB к FB
AC = 4 см (треугольник ABC прямоугольный, по теореме Пифагора квадрат AB равен квадрату AС + квадрату BC, следовательно 25-9 = 16, а корень из 16 это 4).
Соответственно AC/FD=AB/FB это 4/FD = 5/10
Отсюда FD = 8.