a) Вписанный угол равен половине дуги, на которую опирается.
ACB=∪AB/2
Угол между касательной и хордой равен половине дуги, стягиваемой хордой.
KAB=∪AB/2
Следовательно ACB=KAB
б) CAB=KBA (накрест лежащие при AC||KB)
△ACB~△BAK (по двум углам)
△ACB - равнобедренный => △BAK - равнобедренный
(AC/BA=BC/KA, AC=BC => BA=KA)
в) Отношение площадей подобных фигур равно коэффициенту подобия (то есть отношению соответствующих сторон).
S(ACB)/S(BAK)= (AC/AB)^2
Стороны треугольника пропорциональны синусам противолежащих углов - если известны углы, то известно и отношение сторон. В равнобедренном треугольнике достаточно знать один угол (и его расположение), чтобы найти остальные углы. Таким образом в равнобедренном треугольнике ACB достаточно знать угол C, чтобы найти отношение сторон AB и AC.
1) В евклидовой геометрии параллельными прямыми называются прямые, которые лежат в одной плоскости и не пересекаются
2) Секущая — это прямая, которая пересекает кривую в двух точках, а также прямая, пересекающая две другие компланарные прямые в двух разных точках.
3) извени но я ответа и не знаю(❤
4)Признаки параллельности прямых
Если сумма внутренних односторонних углов при двух прямых и секущей равна 180∘, то эти две прямые параллельны. 3. Если соответственные углы при двух прямых и секущей равны, то эти две прямые параллельны.
5)Две прямые, лежащие на одной плоскости, либо имеют только одну общую точку, либо не имеют ни одной общей точки.
В первом случае говорят, что прямые пересекаются, во втором случае — прямые не пересекаются.
вначале допущение и принять то, которое требовалось доказать.
a) Вписанный угол равен половине дуги, на которую опирается.
ACB=∪AB/2
Угол между касательной и хордой равен половине дуги, стягиваемой хордой.
KAB=∪AB/2
Следовательно ACB=KAB
б) CAB=KBA (накрест лежащие при AC||KB)
△ACB~△BAK (по двум углам)
△ACB - равнобедренный => △BAK - равнобедренный
(AC/BA=BC/KA, AC=BC => BA=KA)
в) Отношение площадей подобных фигур равно коэффициенту подобия (то есть отношению соответствующих сторон).
S(ACB)/S(BAK)= (AC/AB)^2
Стороны треугольника пропорциональны синусам противолежащих углов - если известны углы, то известно и отношение сторон. В равнобедренном треугольнике достаточно знать один угол (и его расположение), чтобы найти остальные углы. Таким образом в равнобедренном треугольнике ACB достаточно знать угол C, чтобы найти отношение сторон AB и AC.
(Высота CH является медианой и биссектрисой.
CHA=90, AH=AB/2, ACH=C/2
AH/AC =sin ACH => AB/AC =2sin C/2)
1) В евклидовой геометрии параллельными прямыми называются прямые, которые лежат в одной плоскости и не пересекаются
2) Секущая — это прямая, которая пересекает кривую в двух точках, а также прямая, пересекающая две другие компланарные прямые в двух разных точках.
3) извени но я ответа и не знаю(❤
4)Признаки параллельности прямых
Если сумма внутренних односторонних углов при двух прямых и секущей равна 180∘, то эти две прямые параллельны. 3. Если соответственные углы при двух прямых и секущей равны, то эти две прямые параллельны.
5)Две прямые, лежащие на одной плоскости, либо имеют только одну общую точку, либо не имеют ни одной общей точки.
В первом случае говорят, что прямые пересекаются, во втором случае — прямые не пересекаются.
вначале допущение и принять то, которое требовалось доказать.
извени но это всё что я знаю ✨