Это будет очень длинная задачка. Для начала рассмотрим треугольник BDA. Мы можем заметить, что гипотенуза в два раза больше основания, следовательно угол А будет равен 30 градусам. угол АВD равен 90-30=60 градусов. Угол DВА равен 90-60=30 градусов. Возьмем ВС за х. Напротив угла в 30 градусов лежит катет в два раза меньше гипотенузы следовательно DC = 0,5 х. То же самое в треугольнике АВС, угол А = 30 градусам, а ВС=х. Значит, АС= 2х. 2х-0,5х=1,5х - AD. найдем соотношение AD к AC. 1.5/2 = 3/4. 4AD=3AC
Пусть основания ВС и AD. Обозначим точку пересечения диагоналей - точку О. Проведем высоту через точку пересечения диагоналей. Высота делит основания равнобедренной трапеции пополам. Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x). BC/2=x·tg((180°-α)/2) AD/2=(h-x)· tg((180°-α)/2)
Проведем высоту через точку пересечения диагоналей.
Высота делит основания равнобедренной трапеции пополам.
Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x).
BC/2=x·tg((180°-α)/2)
AD/2=(h-x)· tg((180°-α)/2)
Средняя линия трапеции равна полусумме оснований.
MN=(BC+AD)/2=(BC/2)+(AD/2)=x·tg((180°-α)/2) +(h-x)· tg((180°-α)/2) =
=tg((180°-α)/2)(x+h-x)=h·tg((180°-α)/2)=h·tg(90°-(α/2))