Центр вписанной окружности лежит на пересечении биссектрис. Откуда CO - биссектриса ∠ACB; BO - биссектриса ∠ABC. Биссектриса делит угол пополам.
В ΔOBC: ∠POC - внешний, поэтому равен сумме двух внутренних углов треугольника не смежных с ним. ∠POC = ∠OBC+∠BCO.
∠PCA = ∠PBA, как вписанные углы опирающиеся на одну дугу AP.
∠PBA = ∠PBC, как углы при биссектрисе. Так же ∠ACO = ∠BCO.
В ΔPOC:
∠PCO = ∠PCA+∠ACO = ∠PBC+∠BCO;
∠POC = ∠OBC+∠BCO;
∠PCO = ∠POC ⇒ ΔPOC - равнобедренный (OC - основание) значит, PO=PC, что и требовалось доказать.
б)
Пусть PH⊥AC и H∈AC, тогда PH=21. ∠ABC=120°. T - центр описанной окружности около ΔABC.
Четырёхугольник PABC - вписан в окружность, поэтому ∠APC+∠ABC=180°;
∠APC = 180°-120° = 60°.
∠PCA = ∠PBA = ∠ABC:2 = 120°:2 = 60°
В ΔPCA: ∠PCA=60°; ∠APC =60°; ΔPCA - равнобедренный, с углом при основании в 60°, поэтому это равносторонний треугольник.
Радиус описанной около ΔABC равен радиусу описанной около ΔPCA т.к. это одна окружность.
PH - высота правильного ΔPCA, а значит и медиана.
Центр описанной окружности около правильного треугольника является центром треугольника, в том числе и центром тяжести (т. пересечения медиан). Поэтому радиус описанной равен 2/3 от высоты.
а)
Центр вписанной окружности лежит на пересечении биссектрис. Откуда CO - биссектриса ∠ACB; BO - биссектриса ∠ABC. Биссектриса делит угол пополам.
В ΔOBC: ∠POC - внешний, поэтому равен сумме двух внутренних углов треугольника не смежных с ним. ∠POC = ∠OBC+∠BCO.
∠PCA = ∠PBA, как вписанные углы опирающиеся на одну дугу AP.
∠PBA = ∠PBC, как углы при биссектрисе. Так же ∠ACO = ∠BCO.
В ΔPOC:
∠PCO = ∠PCA+∠ACO = ∠PBC+∠BCO;
∠POC = ∠OBC+∠BCO;
∠PCO = ∠POC ⇒ ΔPOC - равнобедренный (OC - основание) значит, PO=PC, что и требовалось доказать.
б)
Пусть PH⊥AC и H∈AC, тогда PH=21. ∠ABC=120°. T - центр описанной окружности около ΔABC.
Четырёхугольник PABC - вписан в окружность, поэтому ∠APC+∠ABC=180°;
∠APC = 180°-120° = 60°.
∠PCA = ∠PBA = ∠ABC:2 = 120°:2 = 60°
В ΔPCA: ∠PCA=60°; ∠APC =60°; ΔPCA - равнобедренный, с углом при основании в 60°, поэтому это равносторонний треугольник.
Радиус описанной около ΔABC равен радиусу описанной около ΔPCA т.к. это одна окружность.
PH - высота правильного ΔPCA, а значит и медиана.
Центр описанной окружности около правильного треугольника является центром треугольника, в том числе и центром тяжести (т. пересечения медиан). Поэтому радиус описанной равен 2/3 от высоты.
PT = PH = 21·2/3 = 14
ответ: 14.
Нужно провести диагонали AC и BD; O - точка пересечения диагоналей.
Так как диагонали точкой пересечения делятся пополам, точка O середина отрезков
AC и BD
Середина отрезков ищется за формулой:
< var > X_O=\frac{x_A+x_C}{2} \ Y_O=\frac{y_A+y_B}{2} \ O(x_O;y_O) < /var ><var>X
O
=
2
x
A
+x
C
Y
O
=
2
y
A
+y
B
O(x
O
;y
O
)</var>
O(0;6) - координаты точки O
Дальше нужно выразить x и y от точки D через формулу середины отрезка BD
< var > X_D=2x_O-x_B \ Y_D=2y_O-y_B < /var ><var>X
D
=2x
O
−x
B
Y
D
=2y
O
−y
B
</var>
X(D)=2x0-(-6)=6
Y(D)=2x6-12=0
D(6;0) - координаты точки D