Объём пирамиды=1/3*площадь основани*высота пирамиды. основание - правильный треугольник со стороной 6 см, значит 1/4корень из 3*сторону в квадрате=1/4корень из 3*6 в квадрате=9корен из 3. высота пирамиды. если её провести к высоте основания, то получиться прямой треугольник со стороной 60 градусов у основания и 30 - у вершины. Сторона против угла в 60 градусов=половине гипотенузы т. е. гипотенуза - боковое ребро, следовательно 6/2 = 3. Высота пирамиды - это катет этого прямого треугольника = 3. площадь = 1/3*9корень из 3*3=9корень из 3
<ВАР=30⁰, <APB = 60⁰ в треугольнике АВР. Смежный угол <APC=120⁰
Треугольник АРС - равнобедренный (АР=РС по доказанному), РО - высота, медиана, биссектриса, т.е. <АРО=<СРО=60⁰, <РАО=30⁰ (сумма углов треугольника равна 180⁰)
<ВАД=90⁰, <ВАР=30⁰, <РАС=30⁰ <ОАТ=90-(30+30)=30⁰, значит <РАТ=60⁹
Получили, треугольник АРТ - равносторонний, т.к. <P=<A=<t=60⁰
Значит, РТ=АР=АТ=8см, Р(АРСТ)=8*4=32(см)
ответ:32см
основание - правильный треугольник со стороной 6 см, значит 1/4корень из 3*сторону в квадрате=1/4корень из 3*6 в квадрате=9корен из 3.
высота пирамиды. если её провести к высоте основания, то получиться прямой треугольник со стороной 60 градусов у основания и 30 - у вершины. Сторона против угла в 60 градусов=половине гипотенузы т. е. гипотенуза - боковое ребро, следовательно 6/2 = 3. Высота пирамиды - это катет этого прямого треугольника = 3.
площадь = 1/3*9корень из 3*3=9корень из 3