Тут есть "хитрый ход". Пусть биссектриса l = √6; высота h = √5; площадь S, катеты a и b, гипотенуза c. Площади двух треугольников, на которые биссектриса делит весь треугольник, можно записать, как l*a*sin(45°)/2 и l*b*sin(45°)/2; и в сумме это будет S; я сразу перепишу это вот так a + b = (S/l)*(4/√2); кроме того, очевидно, что площадь равна S = c*h/2; или √(a^2 + b^2) = 2*(S/h); Вот теперь следует "хитрый ход". :) Если возвести эти уравнения в квадрат, получится a^2 + b^2 +2*a*b = 8*(S/l)^2; a^2 + b^2 = 4*(S/h)^2; Но a*b/2 = S; :) благодаря чему получается 4*(S/h)^2 + 4*S = 8*(S/l)^2; или 1 = S*(2/l^2 - 1/h^2); если подставить значения, получится S = 15/2;
Даны вершины А(-2; 1), В(1; 4), С(5; 0) i D(2; -3).
Фигура АВСД прямоугольник, если стороны попарно равны и диагонали равны.
Длины сторон.
AB = √((xB-xA)² + (yB-yA)²) = √18 = 4,242640687
BC = √((xC-xB)² + (yC-yB)²) = √32 = 5,656854249
CD = √((xD-xC)² + (yD-yC)²) = √18 = 4,242640687
AD = √((xC-xA)² + (yC-yA)²) = √32 = 5,656854249 .
Длины диагоналей.
AC = √((xC-xA)² + (yC-yA)²) = √50 = 7,071067812
BD = √((xD-xB)² + (yD-yB)²) = √50 = 7,071067812 .
Как видим, эти свойства подтверждены, АВСД - прямоугольник.
Площади двух треугольников, на которые биссектриса делит весь треугольник, можно записать, как l*a*sin(45°)/2 и l*b*sin(45°)/2; и в сумме это будет S; я сразу перепишу это вот так
a + b = (S/l)*(4/√2);
кроме того, очевидно, что площадь равна S = c*h/2; или
√(a^2 + b^2) = 2*(S/h);
Вот теперь следует "хитрый ход". :) Если возвести эти уравнения в квадрат, получится
a^2 + b^2 +2*a*b = 8*(S/l)^2;
a^2 + b^2 = 4*(S/h)^2;
Но a*b/2 = S; :) благодаря чему получается
4*(S/h)^2 + 4*S = 8*(S/l)^2; или
1 = S*(2/l^2 - 1/h^2);
если подставить значения, получится S = 15/2;