1. Одна сторона = х см, другая сторона = 2х см х+х+2х+2х=48 6х=48 х=8 8 см одна сторона 8*2=16 см другая сторона
2. Параллелограмм АBCD, биссектриса АК Угол ВАК = углу КАD, т.к. биссектриса АК делит угол ВАD пополам. Угол КAD = углу BKA, т.к. они накрест лежащие при AD параллельном ВС и секущей АК. Значит, угол ВАК = углу ВКА, т.к. все эти три угла равны между собой. Значит, треугольник АВК равнобедренный, т.к. углы при основании равны. Значит, АВ=ВК=7 см
х+х+2х+2х=48
6х=48
х=8
8 см одна сторона
8*2=16 см другая сторона
2. Параллелограмм АBCD, биссектриса АК
Угол ВАК = углу КАD, т.к. биссектриса АК делит угол ВАD пополам.
Угол КAD = углу BKA, т.к. они накрест лежащие при AD параллельном ВС и секущей АК.
Значит, угол ВАК = углу ВКА, т.к. все эти три угла равны между собой.
Значит, треугольник АВК равнобедренный, т.к. углы при основании равны.
Значит, АВ=ВК=7 см
7+14=21 см другая сторона параллелограмма
7+7+21+21=56 см периметр параллелограмма.
Перед решением задачи необходимо построить треугольник АВС (угол С 90 градусов), провести высоту СН, нанести известные данные.
1. Найдем сторону ВС треугольника АВС.
sinА = ВС/АВ
Подставим известные значения.
0,6 = ВС/25
ВС = 25 * 0,6 = 15
2. Найдем сторону АС треугольника АВС.
По теореме Пифагора: АВ2 = ВС2 + АС2
АС2 = АВ2 - ВС2 = 252 - 152 = 625 - 225 = 400
АС = 20
3. Рассмотрим треугольник АСН:
Угол Н равен 90 градусов, АС = 20, sinА = 0,6.
sinА = СН/АС
Подставим известные значения.
0,6 = СН/20
СН = 0,6 * 20 = 12.
ответ: Высота СН = 12.