1) Наверное, все-таки, РАВНЫЕ отрезки, а не РАЗНЫЕ ?..)) По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника. Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC => ∠ECM = ∠MCD = ∠EDH = ∠HDC Тогда ΔHDC = ΔMCD по стороне и двум углам: (CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC) Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC => эти треугольники равны по стороне и двум углам
По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника.
Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC =>
∠ECM = ∠MCD = ∠EDH = ∠HDC
Тогда ΔHDC = ΔMCD по стороне и двум углам:
(CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC)
Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC =>
эти треугольники равны по стороне и двум углам
6.6
Объяснение:
Дан треугольник АВС. АВ=ВС=5. АС=2.
Проведены высоты СК и AL . Проведем также высоту ВН.
Найти периметр KLH.
АН=АС:2=1
По т Пифагора найдем ВН.
ВН= sqrt(AB²-AH²)=sqrt(25-1)=sqrt(24)
cos(ABH)=cos(B/2)=BH/AB= sqrt(24)/5
sin(B/2)=AH/AB=1/5
cos(B)=(cos(B/2))²-(sin(B/2))²=24/25-1/25=23/25
ΔCKB: KB/CB=cos(B)
KB=CB*cos(B)=5*23/25=23/5
КВ=LB, так как КB=BC/cos(B) и LB=AB/cos(B)) и АВ=АС
=>Δ BKL- равнобедренный => ∡BKL=∡BLK
В треугольниках АВС и KBL угол В - общий.
=> ∡BKL=∡BAC=∡BLK=∡BCA=(180-∡B)/2
=> треугольники KBL и АВС подобны по 2-м углам
=> KB/AB=KL/AC
KL=23/25*2=46/25
Теперь из треугольника КНВ по т косинусов находим КН.
КН²=КВ²+НВ²-2*КВ*НВ*cos(B/2)
KH²=529/25+24-2*23*sqrt(24)*sqrt(24)/5/5
KH²=1129/25+46*24/5= (1129-1104)/25=1
KH=1
P(KLH)=KH+HL+KL=1+1+23/5=6.6