Sбок ==> ? Середина M стороны BC соединим с вершиной пирамиды D и вершиной A ; Угол DMA будет линейным углом между плоскостями DBC и ABC [(DBC )^ (ABC) =α] .Действительно AM ┴ BC и DM ┴ BC ( а BC линия пересечения граней DBC и ABC) . C другой стороны DA ┴(ABC) ⇒DA┴AB ; DA ┴ AC .Поэтому Sбок =S(BDA) +S(CDA) +S(BDC) =1/2*a* DA +1/2*a*DA +S(BDC) ; Sбок =a*DA +S(BDC) . Из ΔMDA : DA=AM*tqα=a√3/2*tqα =a√3/2 *tqα . S(BDC) =1/2*BC*DM =1/2*BC*BM/cosα =S(ABC)/cosα ; S(BDC) = a²√3/4)/cosα. Sбок =a*a√3/2*tqα + a²√3/4)/cosα =(a²√3/4)(2tqα+1/cosα). Sбок = 6²√3/4(2tq60° + 1/cos60°) =9√3(2√3 +2) =18√3(√3+1) или иначе Sбок =18(3+√3). ответ : 18(3+√3) .
Пирамида правильная, т. е. проекция вершины на основание совпадает с пересечением его диагоналей. В квадрате длина диагонали «сторона квадрата» множить на корень из 2-х (можно сослаться на теорему Пифагора – квадрат гипотенузы равен сумме квадратов катетов, поскольку треугольник имеет прямой угол). Диагональ квадрата – она же и основание треугольника в указанном сечении пирамиды. Угол (при учёте, что треугольник прямоугольный) вычисляется как арктангенс отношения противолежащего катета к прилежащему. Противолежащий – это высота из условия, а прилежащий – половина диагонали квадрата в основании. Если подставить все известные данные, то получается дробь: делимое - 5 корней из 6-ти, а делитель - 10 корней из 2-х делённое на 2. После «перекочёвки» 2-ки к 5-ке и сокращения остаётся корень из 6 делить на корень из 2-х или просто корень из 3-х. Арктангенс корня из 3-х ровно 60 градусов. Площадь сечения просто получается перемножением катетов того же треугольника (половинки сечения). 5 корней из 6 множить на 10 корней из 2-х делённых на 2. Всё легко сокращается до вида 50 корней из 3-х.
Sбок ==> ?
Середина M стороны BC соединим с вершиной пирамиды D и вершиной A ;
Угол DMA будет линейным углом между плоскостями DBC и ABC
[(DBC )^ (ABC) =α] .Действительно AM ┴ BC и DM ┴ BC
( а BC линия пересечения граней DBC и ABC) .
C другой стороны DA ┴(ABC) ⇒DA┴AB ; DA ┴ AC .Поэтому
Sбок =S(BDA) +S(CDA) +S(BDC) =1/2*a* DA +1/2*a*DA +S(BDC) ;
Sбок =a*DA +S(BDC) .
Из ΔMDA : DA=AM*tqα=a√3/2*tqα =a√3/2 *tqα .
S(BDC) =1/2*BC*DM =1/2*BC*BM/cosα =S(ABC)/cosα ;
S(BDC) = a²√3/4)/cosα.
Sбок =a*a√3/2*tqα + a²√3/4)/cosα =(a²√3/4)(2tqα+1/cosα).
Sбок = 6²√3/4(2tq60° + 1/cos60°) =9√3(2√3 +2) =18√3(√3+1) или иначе Sбок =18(3+√3).
ответ : 18(3+√3) .