1) cos 2π/3 = cos (π - π/3) = - cos π/3 = - 0.5
2) cos 11π/6 = cos (2π - π/6) = cos π/6 = 0.5√3
3) cos 135° = cos (180° - 45°) = - cos 45° = - 0.5√2
4) sin π = 0
5) cos (-π/6) = cos π/6 = 0.5√3
6) cos 5π = cos (4π + π) = cos π = -1
7) sin (-150°) = - sin 150° = - sin (180° - 30°) = - sin 30° = - 0.5
8) sin (-600°) = - sin 600° = -sin (360° + 180° + 60°) =
= -sin (180° + 60°) = sin (60°) = 0.5√3
9) sin 5π/6 = sin (π - π/6) = sin π/6 = 0.5
10) sin 5π/3 = sin (2π - π/3) = - sin π/3 = - 0.5√3
11) sin 225° = sin (270° - 45°) = - cos 45° = -0.5√2
12) cos (-510°) = cos 510° = (cos 540° - 30°) = - cos 30° = -0.5√3
13) ctg 7π/6 = ctg (π + π/6) = ctg π/6 = √3
14) ctg 270° = 0
15) ctg 7π/4 = ctg (2π - π/4) = - ctg π/4 = - 1
16) tg 150° = tg (180° - 30°) = - tg 30° = -1 : √3
у=-4х-2
Объяснение:
1.
Составим уравнение прямой,
проходящей через точки
А(2; 4) и В(4; -4).
Уравнение прямой:
у=kx+b
где k - угловой коэффициент
b - свободный член.
2.
Подставим в уравнение пря
мой сначала координаты точ
ки А(2; 4) х=2; у=4 :
4=k×2+b
4=2k+b
b=4-2k
3.
мой координаты точки В(4; -4)
х=4; у=-4 :
-4=k×4+b
Подставляем выражение, по
лученное для b :
-4=4k+b
-4=4k+(4-2k)
-4=2k+4
-2k=4+4
-2k=8
k=-8/2
k=-4
4.
Нвходим значение коэффици
ента b :
b=4-2×(-4)=4+8=12
5.
k=-4; b=12
Все коэффициенты уже извест
ны ==> можно составить уравне
ние прямой, проходящей через
точки А и В:
у=-4х+12
6.
Прямые параллельны, если рав
ны их угловые коэффициенты
==> у искомой прямой k=-4.
Уравнение искомой прямой
у=-4х+b
и она проходит через точку
С(-2; 6) х=-2; у=6.
7.
Подставляем координаты точки
С в уравнение искомой прямой:
-6=-4(-2)+b
6=8+b
-b=8-6
-b=2
b=-2
Уравнение искомой прямой:
1) cos 2π/3 = cos (π - π/3) = - cos π/3 = - 0.5
2) cos 11π/6 = cos (2π - π/6) = cos π/6 = 0.5√3
3) cos 135° = cos (180° - 45°) = - cos 45° = - 0.5√2
4) sin π = 0
5) cos (-π/6) = cos π/6 = 0.5√3
6) cos 5π = cos (4π + π) = cos π = -1
7) sin (-150°) = - sin 150° = - sin (180° - 30°) = - sin 30° = - 0.5
8) sin (-600°) = - sin 600° = -sin (360° + 180° + 60°) =
= -sin (180° + 60°) = sin (60°) = 0.5√3
9) sin 5π/6 = sin (π - π/6) = sin π/6 = 0.5
10) sin 5π/3 = sin (2π - π/3) = - sin π/3 = - 0.5√3
11) sin 225° = sin (270° - 45°) = - cos 45° = -0.5√2
12) cos (-510°) = cos 510° = (cos 540° - 30°) = - cos 30° = -0.5√3
13) ctg 7π/6 = ctg (π + π/6) = ctg π/6 = √3
14) ctg 270° = 0
15) ctg 7π/4 = ctg (2π - π/4) = - ctg π/4 = - 1
16) tg 150° = tg (180° - 30°) = - tg 30° = -1 : √3
у=-4х-2
Объяснение:
1.
Составим уравнение прямой,
проходящей через точки
А(2; 4) и В(4; -4).
Уравнение прямой:
у=kx+b
где k - угловой коэффициент
b - свободный член.
2.
Подставим в уравнение пря
мой сначала координаты точ
ки А(2; 4) х=2; у=4 :
4=k×2+b
4=2k+b
b=4-2k
3.
Подставим в уравнение пря
мой координаты точки В(4; -4)
х=4; у=-4 :
-4=k×4+b
Подставляем выражение, по
лученное для b :
-4=4k+b
-4=4k+(4-2k)
-4=2k+4
-2k=4+4
-2k=8
k=-8/2
k=-4
4.
Нвходим значение коэффици
ента b :
b=4-2k
k=-4
b=4-2×(-4)=4+8=12
5.
k=-4; b=12
Все коэффициенты уже извест
ны ==> можно составить уравне
ние прямой, проходящей через
точки А и В:
у=-4х+12
6.
Прямые параллельны, если рав
ны их угловые коэффициенты
==> у искомой прямой k=-4.
Уравнение искомой прямой
у=-4х+b
и она проходит через точку
С(-2; 6) х=-2; у=6.
7.
Подставляем координаты точки
С в уравнение искомой прямой:
-6=-4(-2)+b
6=8+b
-b=8-6
-b=2
b=-2
Уравнение искомой прямой:
у=-4х-2
у=-4х-2