По свойствам параллелограмма, сумма углов, прилежащих к одной стороне, равна 180°.
В задаче сумма двух углов равна 226°. Значит эти углы не могут прилежать к одной стороне,а являются противоположными.
В параллелограмме противоположные углы равны.
Следовательно,эти два угла равны,а их сумма составляет 226°,значит один угол равен 226° : 2 = 113°
Соседние с ними углы раны : 180° -113°= 67°(сумма углов,прилежащих к одной стороне параллелограмма (соседних),равна 180°.
Наибольший угол параллелограмма равен 113°.
Объяснение:
1) ∠KON = 180° - 78° = 102° (как смежный с ∠MOK)
x = ∠OKN = (180° - 102°) / 2 = 39° (ΔKON равнобедренный)
5) Дуга SNM = 180° (стягивает диаметр)
Меньшая дуга MN = 80°, т.к. на нее опирается вписанный угол в 40°
Следовательно x = 180° - 80° = 100°
2) Т.к. AO = OB, то ΔAOB равнобедренный. А т.к. угол при вершине O равен 60°, то он равносторонний. Отсюда x = 8.
6) Меньшая дуга MK = 360° - 180° - 124° = 56°
Вписанный угол опирающийся на эту дугу равен половине ее градусной меры:
x = 56° / 2 = 28°
По свойствам параллелограмма, сумма углов, прилежащих к одной стороне, равна 180°.
В задаче сумма двух углов равна 226°. Значит эти углы не могут прилежать к одной стороне,а являются противоположными.
В параллелограмме противоположные углы равны.
Следовательно,эти два угла равны,а их сумма составляет 226°,значит один угол равен 226° : 2 = 113°
Соседние с ними углы раны : 180° -113°= 67°(сумма углов,прилежащих к одной стороне параллелограмма (соседних),равна 180°.
Наибольший угол параллелограмма равен 113°.
Объяснение:
1) ∠KON = 180° - 78° = 102° (как смежный с ∠MOK)
x = ∠OKN = (180° - 102°) / 2 = 39° (ΔKON равнобедренный)
5) Дуга SNM = 180° (стягивает диаметр)
Меньшая дуга MN = 80°, т.к. на нее опирается вписанный угол в 40°
Следовательно x = 180° - 80° = 100°
2) Т.к. AO = OB, то ΔAOB равнобедренный. А т.к. угол при вершине O равен 60°, то он равносторонний. Отсюда x = 8.
6) Меньшая дуга MK = 360° - 180° - 124° = 56°
Вписанный угол опирающийся на эту дугу равен половине ее градусной меры:
x = 56° / 2 = 28°