Скільки існує пар трикутників , які є рівними даному рівносторонньому трикутнику АВС ( по малюнку ) та мають із ним тільки одні спільну сторону ? 1. 7 2. 6 3. 3 4. Г
так как боковые стороны равны, то трапеция равнобедренная, проведем две высоты в трапеции, расстояние между высотами и концами оснований равно (13-9)/2=2(см)
получим прямоугольный треугольник с известными двумя сторонами 4 и 2. Это прямоугольный треугольник, если в прямоугольном треугольнике катет равен половине гипотенузы, то угол лежащий против этого катета равне 30 градусов, угол трапеции равен сумме найденного угла и прямого угла, т. е 30+90=120, второй угол равен 180-120=60
Объяснение:
так как боковые стороны равны, то трапеция равнобедренная, проведем две высоты в трапеции, расстояние между высотами и концами оснований равно (13-9)/2=2(см)
получим прямоугольный треугольник с известными двумя сторонами 4 и 2. Это прямоугольный треугольник, если в прямоугольном треугольнике катет равен половине гипотенузы, то угол лежащий против этого катета равне 30 градусов, угол трапеции равен сумме найденного угла и прямого угла, т. е 30+90=120, второй угол равен 180-120=60
ответ 120, 120, 60, 60
равнобедренный ΔАОС (О - центр основания конуса): АО=ОС=R, <AOC=120°, <OAC=<OCA=30°, OM_|_AC, ОМ - высота, медиана ΔАОС, ⇒АМ=3√3.
tg30°=OM:AM.
по условию, секущая плоскость составляет с плоскостью основания угол 45°, ⇒ линейный угол ВАСМ - угол ВМО=45°. высота конуса Н=ОМ=3
ответ: Vк=20,25π
2. MABCD - правильная пирамида с диагональю основания АС=d, угол между боковым ребром МА и плоскостью основания <MAC= α
MO_|_(MABCD), МО - высота пирамиды.
прямоугольный ΔМОА: ОА=d/2, <A=α. tgα=MO:OA, MO=tgα*OA
MO=d*tgα/2
Vпир=(1/3)*Sосн*H
Sосн=a², a- сторона основания пирамиды
диагональ пирамиды найдена по теореме Пифагора из ΔАВС: АС²=АВ²+АС²
АВ=АС=а
d²=a²+a², d²=2a². d=a√2, ⇒a=d/√2
S=(d/√2)²=d²/2
Vпир=(1/3)*(d²/2)*(d*tgα/2)
Vпир=(d³ *tgα)/12