1. Дана окружность с центром в точке O. AB –диаметр, точка C отмечена на окружности,
угол A равен 470 . Найдите угол C и угол B.
2. AB и AC – отрезки касательных, проведенных к окружности радиуса 6 см. Найдите длинуOA и AC, если AB = 8 см.
3. Точки A и B делят окружность с центром O на дуги AMB и ACB так, что дуга ACB на 800меньше дуги AMB. AM – диаметр окружности. Найдите углы AMB, ABM, ACB.
4. Найдите радиус окружности, вписанной в треугольник, и радиус окружности, описанной около треугольника, стороны которого равны 16 см, 17 см и 17 см. Контрольная работа № 5 по теме: «Окружность» Вариант 2
1. Дана окружность с центром в точке O. AB –диаметр, точка C отмечена на окружности,
(Отрицательное значение х указыает на то, что основание высоты h треугольника АВС находится на продолжнении его основания, и, следовательно, угол АСВ - тупой.
Можно было бы, зная, что треугольник тупоугольный, расстояние АН обозначить как 4+х. Результат был бы тот же.)
-------------------------
h²=169-25=144
h=12
Рассмотрим треугольник ВМН. (Второй рисунок дала для большей наглядности. При решении можно использовать дополнительное построение, в котором В1М1=ВМ, а угол В1АМ1 равен 30 градусов)
Расстояние ВМ от вершины В до плоскости α - катет прямоугольного треугольника ВМН, противолежащий углу 30 градусов, и потому равен половине высоты ВН треугольника АВС
угол A равен 470 . Найдите угол C и угол B.
2. AB и AC – отрезки касательных, проведенных к окружности радиуса 6 см. Найдите длинуOA и AC, если AB = 8 см.
3. Точки A и B делят окружность с центром O на дуги AMB и ACB так, что дуга ACB на 800меньше дуги AMB. AM – диаметр окружности. Найдите углы AMB, ABM, ACB.
4. Найдите радиус окружности, вписанной в треугольник, и радиус окружности, описанной около треугольника, стороны которого равны 16 см, 17 см и 17 см.
Контрольная работа № 5 по теме: «Окружность» Вариант 2
1. Дана окружность с центром в точке O. AB –диаметр, точка C отмечена на окружности,
Проведем высоту ВН= h треугольника АВС.
Расстояние от С до Н обозначим х, от Н до А 4-х
Высоту вычислим из треугольника ВНС и ВНА
h²=ВС²-х²=13²-х²
h²=ВА²=АН²= 15²-(4-х)²
h²=15²-(4-х)²
13²-х²=15²-(4-х)²
169-х²=225-16+8х-х²
169 - х²=225 - 16 + 8х - х²
8х= - 40
х= -5 см
----------------------
(Отрицательное значение х указыает на то, что основание высоты h треугольника АВС находится на продолжнении его основания, и, следовательно, угол АСВ - тупой.
Можно было бы, зная, что треугольник тупоугольный, расстояние АН обозначить как 4+х. Результат был бы тот же.)
-------------------------
h²=169-25=144
h=12
Рассмотрим треугольник ВМН. (Второй рисунок дала для большей наглядности. При решении можно использовать дополнительное построение, в котором В1М1=ВМ, а угол В1АМ1 равен 30 градусов)
Расстояние ВМ от вершины В до плоскости α - катет прямоугольного треугольника ВМН, противолежащий углу 30 градусов, и потому равен половине высоты ВН треугольника АВС
ВМ=12:2=6 см