В основании правильной 4-уг. пирамиды лежит квадрат, так как боковое ребро образует угол в 45 градусов, то мы получаем равнобедренный прямоугольный треугольник, в котором высота и 1/2 диагонали квадрата катеты, а боковое ребро -гипотенуза , по теореме пифагора находим катеты (а), они у нас равны между собой и равны а^2+а^2=4^2 2а^2=16 а^=8 а=2V2см - это мы нашли высоту
площадь боковой поверхности пирамиды равна 4 площадям боковых граней, сторона квадрата (b в квадрате), лежащего в основании равна 2а в квадрате (по теореме пифагора) b^2=2а^2=2*(2V2)^2 b=4см найдем апофему (с) с^2=4^2-(b/2)^2=16-4=12 с=V12 c=2V3 cм
D=4 => R=2
Если соединить концы хорды с центром окружности, то получится равносторонний треугольник, так как все стороны равны 2
Площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой
равна площади сектора минус площадь треугольника
Найдем площадь сектора
S=(pi*R^2/360°)*A°,
ГДЕ А°- угол треугольника или угол сектора
S=(pi*2^2/360)*60=4*pi*/6=2,09
Площадь равностороннего треугольника равна
S=(sqrt(3)/4)*a^2
S=(sqrt(3)/4)*4=sqrt(3)=1,73
То есть наша площадь равна
S=2,09-1,73=0,36
В основании правильной 4-уг. пирамиды лежит квадрат, так как боковое ребро образует угол в 45 градусов, то мы получаем равнобедренный прямоугольный треугольник, в котором высота и 1/2 диагонали квадрата катеты, а боковое ребро -гипотенуза , по теореме пифагора находим катеты (а), они у нас равны между собой и равны а^2+а^2=4^2 2а^2=16 а^=8 а=2V2см - это мы нашли высоту
площадь боковой поверхности пирамиды равна 4 площадям боковых граней, сторона квадрата (b в квадрате), лежащего в основании равна 2а в квадрате (по теореме пифагора) b^2=2а^2=2*(2V2)^2 b=4см найдем апофему (с) с^2=4^2-(b/2)^2=16-4=12 с=V12 c=2V3 cм
S=4*(1/2)*b*c=2*4*2V3=16V3 кв.см