1) Если все боковые стороны (это рёбра) пирамиды имеют одинаковую длину, то их проекции на основание - радиусы R описанной окружности вокруг основания.
Радиус равен половине диагонали основания.
R = √(3² + 4²) = 5 см.
Тогда высота Н пирамиды равна:
Н = √(13² - 5²) = √(169 - 25) = 12 см.
2) Будем считать, что в задании имеется в виду, что высота пирамиды проецируется на основание в вершину прямого угла.
Тогда 2 боковых грани пирамиды вертикальны, одна - наклонная.
Гипотенуза основания равна √(9² + 12²) = 15 см.
Высота основания на гипотенузу равна (9*12)/15 = (36/5) = 7,2 см.
Высота наклонной боковой грани равна √(8² + 7,2²) = 0,8√181 ≈ 10,7629 см.
1) Два угла с общей вершиной, одна из сторон которых — общая, а оставшиеся стороны лежат на одной прямой (не совпадая) 2) Пусть угол LON и угол DON –данные смежные углы, луч OD проходит между сторонами OL и ON развернутого угла LON. Поэтому сумма угола LON и угола DON равна развернутому LON,то есть, равна 180 градусам. 3) 
Из теоремы 2.1 следует, что если два угла равны, то смежные с ними углы равны. Допустим, углы (a1b) и (c1d) равны. Нам нужно доказать, что углы (a2b) и (c2d) тоже равны. Сумма смежных углов равна 180°. Из этого следует, что a1b + a2b = 180° и c1d + c2d = 180°. Отсюда, a2b = 180° - a1b и c2d = 180° - c1d. Так как углы (a1b) и (c1d) равны, то мы получаем, что a2b = 180° - a1b = c2d. По свойству транзитивности знака равенства следует, что a2b = c2d. Что и требовалось доказать. 4) Угол, равный 90°, называется прямым углом. Угол, меньший 90°, называется острым углом. Угол, больший 90° и меньший 180°, называется тупым. 5)Из теоремы о сумме смежных углов следует, что угол, смежный с прямым углом, есть прямой угол: x + 90° = 180°, x= 180° - 90°, x = 90°.
1) Если все боковые стороны (это рёбра) пирамиды имеют одинаковую длину, то их проекции на основание - радиусы R описанной окружности вокруг основания.
Радиус равен половине диагонали основания.
R = √(3² + 4²) = 5 см.
Тогда высота Н пирамиды равна:
Н = √(13² - 5²) = √(169 - 25) = 12 см.
2) Будем считать, что в задании имеется в виду, что высота пирамиды проецируется на основание в вершину прямого угла.
Тогда 2 боковых грани пирамиды вертикальны, одна - наклонная.
Гипотенуза основания равна √(9² + 12²) = 15 см.
Высота основания на гипотенузу равна (9*12)/15 = (36/5) = 7,2 см.
Высота наклонной боковой грани равна √(8² + 7,2²) = 0,8√181 ≈ 10,7629 см.
Теперь можно определить площади боковых граней.
Sбок = (1/2) *(6*8 + 12*8 + 15*(4/5)√181) = (72 + 6√181) см².
Площадь основания Sо = (1/2)(9*12) = 54 см².
Полная площади пирамиды равна 54 + 72 + 6√181 = 126 + 6√181 см².
Объём пирамиды равен (1/3)*54*8 = 144 см³.
2) Пусть угол LON и угол DON –данные смежные углы, луч OD проходит между сторонами OL и ON развернутого угла LON. Поэтому сумма угола LON и угола DON равна развернутому LON,то есть, равна 180 градусам.
3) 
Из теоремы 2.1 следует, что если два угла равны, то смежные с ними углы равны.
Допустим, углы (a1b) и (c1d) равны. Нам нужно доказать, что углы (a2b) и (c2d) тоже равны.
Сумма смежных углов равна 180°. Из этого следует, что a1b + a2b = 180° и c1d + c2d = 180°. Отсюда, a2b = 180° - a1b и c2d = 180° - c1d. Так как углы (a1b) и (c1d) равны, то мы получаем, что a2b = 180° - a1b = c2d. По свойству транзитивности знака равенства следует, что a2b = c2d. Что и требовалось доказать.
4) Угол, равный 90°, называется прямым углом.
Угол, меньший 90°, называется острым углом.
Угол, больший 90° и меньший 180°, называется тупым.
5)Из теоремы о сумме смежных углов следует, что угол, смежный с прямым углом, есть прямой угол: x + 90° = 180°, x= 180° - 90°, x = 90°.