№1 по теореме ФалесаМN/МP = MK/ME12/8=MK/6MK= 9 МP/МN =PE/NK8/12=PE/NK = 2 : 3 №2Треугольник АВС подобен треугольнику MNK по второму признаку подобности (по двум пропорцианильным сторонам и равному углу между ними)AB/MN = BC/NK=12/6=18/9=2 - коэф.подобности,Значит AB/MN= AC/MK , MK= 12 x 7/6=14В подобных треугольниках соответствующие углы равны.угол С =60, угол А =50№3треугольник АОС подобен треугольнику ОДВ по первому признаку подобности (по двум равным углам)Периметры подобных треугольников относятся как соответствующие стороны -Периметр АОС : периметру ВОД = АО : ОВ=2 :3,Периметрр АОС = периметр ВОД х 2 /3= 21 х 2/3=14
№1: . №2: .
Объяснение:
№1.
Пусть , тогда - секущая.
Теорема: "При пересечении двух параллельных прямых секущей, сумма односторонних углов равна .
, по условию.
и - односторонние углы
№2.
Обозначим данные прямые буквами
Пусть - секущая прямых и
Теорема: "При пересечении двух параллельных прямых секущей, накрест лежащие углы равны".
и - накрест лежащие при пересечении и секущей , однако .
и - не параллельны.
Свойство: "Вертикальные углы равны".
Свойство: "Сумма смежных углов равна ".
Рассмотрим углы, образовавшиеся при пересечении прямых и
, по свойству вертикальных углов.
, по свойству смежных углов.
, по свойству вертикальных углов.
Рассмотрим углы, образовавшиеся при пересечении прямых и .
, по свойству вертикальных углов.
, по свойству смежных углов.
, по свойству вертикальных углов.
Объяснение: