а)
PE ∩ AB = P₁ т.к. PE, AB ⊂ (ABC).
PE ∩ BC = E₁ т.к. PE, BC ⊂ (ABC).
P₁ и E₁ ∈ PE ⊂ (TPE) ⇒ P₁ и E₁ ∈ (TPE).
P₁ ∈ AB ⊂ (ABS) и T ∈ SB ⊂ (ABS) соединяем две точке, которые лежат в одной плоскости (ABS).
P₁T ∩ SA = N ∈ (TPE) т.к. T, P₁ ∈ (TPE).
E₁ ∈ BC ⊂ (BCS) и T ∈ SB ⊂ (BCS) соединяем две точке, которые лежат в одной плоскости (BCS).
E₁T ∩ SC = M ∈ (TPE) т.к. T, E₁ ∈ (TPE).
TMEPN - нужное сечение.
б)
M, N ∈ (TPE);
M ∈ SC ⊂ (SAC) ⇒ M ∈ (SAC);
N ∈ SA ⊂ (SAC) ⇒ N ∈ (SAC).
Получается, что (TPE) ∩ (SAC) = MN
ответ: MN.
а)
PE ∩ AB = P₁ т.к. PE, AB ⊂ (ABC).
PE ∩ BC = E₁ т.к. PE, BC ⊂ (ABC).
P₁ и E₁ ∈ PE ⊂ (TPE) ⇒ P₁ и E₁ ∈ (TPE).
P₁ ∈ AB ⊂ (ABS) и T ∈ SB ⊂ (ABS) соединяем две точке, которые лежат в одной плоскости (ABS).
P₁T ∩ SA = N ∈ (TPE) т.к. T, P₁ ∈ (TPE).
E₁ ∈ BC ⊂ (BCS) и T ∈ SB ⊂ (BCS) соединяем две точке, которые лежат в одной плоскости (BCS).
E₁T ∩ SC = M ∈ (TPE) т.к. T, E₁ ∈ (TPE).
TMEPN - нужное сечение.
б)
M, N ∈ (TPE);
M ∈ SC ⊂ (SAC) ⇒ M ∈ (SAC);
N ∈ SA ⊂ (SAC) ⇒ N ∈ (SAC).
Получается, что (TPE) ∩ (SAC) = MN
ответ: MN.
ВК=BD*sin(BDA)
С другой стороны, AD = AC / 2 = BD / cos(BDA) => AC = 2 * BD / cos(BDA)
Площадь S треугольника АВС:
S = ВК*АС / 2 = ВК*АD = BD*sin(BDA) * BD / cos(BDA) = BD^2 * tg(BDA)
tg(BDA) = S / BD^2; 1 / cos(BDA) = корень (1 + tg^2(BDA)) = корень (1 + S^2 / BD^4)
Таким образом,
AC = 2 * BD / cos(BDA) = 2 * BD * корень (1 + S^2 / BD^4)
АС = 2 * 3 * корень (1 + 12^2 / 3^4) = 6 * корень (1 + 144 / 81) = 6 * корень (225 / 81) = 6 * 15 / 9 = 10.