Пусть даны длины 2-х катетов прямоугольного треугольника, тогда неизвестно будет гипотенуза этого треугольника. Тогда:
a=7 см
b=8 см
c=?
По т. Пифагора:
c²=a²+b² => c=√(a²+b²)
с=√(7²+8²)=√(49+64)=√113 см.
2 случай:
Пусть дана длина катета и гипотенуза прямоугольного треугольника, тогда неизвестно будет 2-й катет этого треугольника. Т.к. гипотенуза прямоугольного треугольника всегда больше катета, тогда:
1) найдём гипотенузу по теореме Пифагора: с=√(24^2+18^2)=√(576+324)=√900= 30; 2) биссектриса проведена к катету, равному 18 ( против меньшей стороны лежит меньший угол); 3) биссектриса делит катет на две части х и у; х+у=18 (х - ближе к прямому углу); 4) биссектриса делит катет на пропорциональные части: 24:х=30:у 30х=24у 5х=4у у=5х/4 (1) х+у=18 (2) подставим из (1) в (2): 5х/4 + х=18 5х+4х=18*4 9х=18*4 х=2*4=8 5) по теореме Пифагора найдём биссектрису (L): L=√(24^2+8^2)=√(576+64)=√640=√64*10=8√10 ответ: 8√10
Объяснение:
Теорема Пифагора: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: c²=a²+b².
1 случай:
Пусть даны длины 2-х катетов прямоугольного треугольника, тогда неизвестно будет гипотенуза этого треугольника. Тогда:
a=7 см
b=8 см
c=?
По т. Пифагора:
c²=a²+b² => c=√(a²+b²)
с=√(7²+8²)=√(49+64)=√113 см.
2 случай:
Пусть дана длина катета и гипотенуза прямоугольного треугольника, тогда неизвестно будет 2-й катет этого треугольника. Т.к. гипотенуза прямоугольного треугольника всегда больше катета, тогда:
a=7 см
с=8 см
b=?
По т. Пифагора:
c²=a²+b² => b=√(c²-a²)
b=√(8²-7²)=√(64-49)=√15 cм.