Опустим из вершины В высоту трапеции ВН. Высота равнобедренной трапеции делит основание на отрезки, меньший из которых равен полуразности, а больший - полусумме оснований. АН=(10-2):2=4 см Из треугольника АВН по т. Пифагора ВН=3 см.
Противоположные стороны трапеции параллельны. Биссектриса угла ВАD при них – секущая. ∠ВЕА=∠ЕАD – накрестлежащие. Но ∠ВАЕ=∠ЕАD, т.к. АЕ - биссектриса. ⇒ ∆ АВЕ - равнобедренный (т.к.углы при основании АЕ равны). АВ=ВЕ=5 см.
Проведем из Е параллельно АВ прямую до пересечения с АD в точке М. В параллелограмме АВЕМ противоположные стороны параллельны и равны, значит, ЕМ=АВ=ВЕ=АМ=5, ⇒ АВЕМ - ромб.
Высота трапеции ВН - высота ромба. Площадь ромба равна произведению высоты на сторону, к которой проведена. Ѕ(АВЕМ)=ВН•АМ=3•5=15 см²
Биссектриса угла АВЕ – меньшая диагональ ромба ВМ и образует с высотой ромба и частью его стороны прямоугольный треугольник ВНМ, в котором ВН и МН - катеты. ВН=3 см, МН=АМ-АН=1см По т.Пифагора ВМ=√(BH²+HM²)=√(9+1)=√10. Биссектриса ВО угла АВЕ в ∆ АВЕ равна половине ВМ. ВО=(√10)/2; BO²=10/4=2,5 см²
1. 1) Прямая FВ пересекает две стороны ( AC в точке F, AD в точке N) и продолжение третьей стороны (CD в точке B) Δ АDС. По теореме Менелая : AF/FC ·CB/BD ·DN/NA =1 .
2) ВD половина ВС, значит CB/ BD =2/1,
DN= NA, значит DN/NA =1/1.
Пусть FC=AC- AF=18-AF, тогда
AF/(18-AF )· 2/1· 1/1=1
AF /(18-AF )=1/2
18-AF=2 AF
3AF=18
AF =6 см
ответ: 6 см
2. Δ ABC- прямоугольный равнобедренный , АВ =АС, ВС=36см (гипотенуза). AN=NC. Найти NK.
Опустим из вершины В высоту трапеции ВН. Высота равнобедренной трапеции делит основание на отрезки, меньший из которых равен полуразности, а больший - полусумме оснований. АН=(10-2):2=4 см Из треугольника АВН по т. Пифагора ВН=3 см.
Противоположные стороны трапеции параллельны. Биссектриса угла ВАD при них – секущая. ∠ВЕА=∠ЕАD – накрестлежащие. Но ∠ВАЕ=∠ЕАD, т.к. АЕ - биссектриса. ⇒ ∆ АВЕ - равнобедренный (т.к.углы при основании АЕ равны). АВ=ВЕ=5 см.
Проведем из Е параллельно АВ прямую до пересечения с АD в точке М. В параллелограмме АВЕМ противоположные стороны параллельны и равны, значит, ЕМ=АВ=ВЕ=АМ=5, ⇒ АВЕМ - ромб.
Высота трапеции ВН - высота ромба. Площадь ромба равна произведению высоты на сторону, к которой проведена. Ѕ(АВЕМ)=ВН•АМ=3•5=15 см²
Биссектриса угла АВЕ – меньшая диагональ ромба ВМ и образует с высотой ромба и частью его стороны прямоугольный треугольник ВНМ, в котором ВН и МН - катеты. ВН=3 см, МН=АМ-АН=1см По т.Пифагора ВМ=√(BH²+HM²)=√(9+1)=√10. Биссектриса ВО угла АВЕ в ∆ АВЕ равна половине ВМ. ВО=(√10)/2; BO²=10/4=2,5 см²
1. 1) Прямая FВ пересекает две стороны ( AC в точке F, AD в точке N) и продолжение третьей стороны (CD в точке B) Δ АDС. По теореме Менелая : AF/FC ·CB/BD ·DN/NA =1 .
2) ВD половина ВС, значит CB/ BD =2/1,
DN= NA, значит DN/NA =1/1.
Пусть FC=AC- AF=18-AF, тогда
AF/(18-AF )· 2/1· 1/1=1
AF /(18-AF )=1/2
18-AF=2 AF
3AF=18
AF =6 см
ответ: 6 см
2. Δ ABC- прямоугольный равнобедренный , АВ =АС, ВС=36см (гипотенуза). AN=NC. Найти NK.
1) AC²+BC²=36² (по теореме Пифагора)
2АС²=1296
АС²=648
АС= 18√2см =AB, значит NC =9√2 см
2 )Δ АВС подобен Δ NKC: (по первому признаку) ∠К= ∠А,
∠ С- общий. Тогда:
NC/BC= NK/AB
9√2/36= NK /18√2
NK = (9√2·18√2)/36=324/36=9 см
ответ: 9 см