Если разделить ромб наименьшей диагональю, то получится два равнобедренных треугольника, так как все стороны у ромба равны. Угол 60° разделится по полам, так бессектриса является и высотой и медианой (в ромбе диагонали перпендикулярны, а равнобедренном труголнике высота является и бессектрисой, и медианой. Получился прямоугольный треугольник с углом 30°. Напротив него лежит катет равный половине гипотенузы. Катет является половиной меньшей диагонали (диагонали в ромбе при пересечении делятся по полам). Гипотенуза равна 8, значит катет равен 4. Из этого выходит, что меньшая диагональ равна 8. P.S Не забудь сделать мой ответ лучшим. Удачи тебе.
а) по свойству соотношения сторон и углов треугольника, против меньшей стороны лежит меньший угол, а значит меньшим будет угол, лежащий против стороны 12 см, по условию, следовательно, это угол А.
cos A = AC / AB; cos A = 4/5 = 0.8
б) Есть св-во - оно же основное геометрическое тождество, сумма квадратов косинусов острых углов прямоугольного треугольника равна единице, но вы похоже этого ещё не изучали, посему надо найти оставшийся косинус угла В и найти сумму квадратов косинусов вычислением, приступим:
P.S Не забудь сделать мой ответ лучшим. Удачи тебе.
Дано:
тр АВС (уг С=90)
АС = 16 см
ВС = 12 см
АВ = 20 см
Найти:
а) косинус меньшего угла
б) сумму квадратов косинусов острых углов
а) по свойству соотношения сторон и углов треугольника, против меньшей стороны лежит меньший угол, а значит меньшим будет угол, лежащий против стороны 12 см, по условию, следовательно, это угол А.
cos A = AC / AB; cos A = 4/5 = 0.8
б) Есть св-во - оно же основное геометрическое тождество, сумма квадратов косинусов острых углов прямоугольного треугольника равна единице, но вы похоже этого ещё не изучали, посему надо найти оставшийся косинус угла В и найти сумму квадратов косинусов вычислением, приступим:
cos B = CB / AB; cos B = 12/20 = 3/5 = 0.6
cos²A +cos²B = 0.8²+0.6²=0.64+0.36=1