Пусть A' – середина дуги BC. Так как OA' || IA2, прямые OI и A'A2 пересекаются в точке K – центре гомотетии описанной и вписанной окружностей (см. рис.). Докажем, что K – искомый радикальный центр.
Первый Так как инверсия с центром A' и радиусом A'B меняет местами прямую BC и описанную окружность Ω треугольника ABC, точка A1 переходит в A, а A2 – в точку A'' пересечения прямой A'A2 с описанной окружностью. Следовательно, точки A, A1, A2 и A'' лежат на одной окружности.
Степень точки K относительно описанной окружности треугольника AA1A2 равна – KA2·KA'' = – r/R AA'·KA'' = r/R s(K), где s(K) – степень точки K относительно Ω.
Очевидно, степени точки K относительно описанных окружностей треугольников BB1B2 и CC1C2 будут такими же, то есть K – радикальный центр трёх окружностей.
Второй Пусть A', B', C' – середины дуг BC, CA, AB. Тогда треугольник A'B'C' переводится в A2B2C2 гомотетией с коэффициентом r/R и центром K, то есть KA2 : A'A2 = KB2 : B'B2 = KC2 : C'C2 = k : 1. Для точек прямой A'A2 разность степеней относительно описанной окружности треугольника AA1A2 и вписанной окружности треугольника ABC является линейной функцией. В точке A2 эта функция равна нулю,
а в точке A' – r², поскольку A'A1·A'A = A'B² = A'I² (первое равенсто следует из подобия треугольников A'A1B и A'BA, а второе – из леммы о трезубце – см. задачу 53119). Значит, в точке K эта разность равна – kr². Другие аналогичные разности в точке K также равны – kr², откуда и следует требуемое
∠АВD=60°
∠BDC=120°
Объяснение:
Дано: прямые AB ║ CD;
секущая BD.
ВК - биссектриса ∠АВD; DK - биссектриса ∠BDC;
BD=2KD.
Найти: ∠АВD; ∠BDC.
1. ∠АВD +∠BDC=180° - внутренние односторонние при AB ║ CD и сек. BD.
2. ∠1=∠2 (ВК - биссектриса)
∠3=∠4 (DK - биссектриса)
⇒∠1+∠2+∠3+∠4=180°
или ∠2+∠3=90°
3. Рассмотрим ΔKBD
∠2+∠3=90° (п.2)
⇒∠BKD=180°-(∠2+∠3)=90° (сумма углов Δ)
⇒ ΔKBD - прямоугольный.
4.BD=2KD (условие)
То есть катет вдвое меньше гипотенузы.
⇒ KD лежит против ∠2=30°.
Тогда ∠3=90°-∠2=60° (сумма острых углов прямоугольного Δ)
5. ∠АВD=30°·2=60° (ВК - биссектриса)
∠BDC=60°·2=120° (DK - биссектриса)
Пусть A' – середина дуги BC. Так как OA' || IA2, прямые OI и A'A2 пересекаются в точке K – центре гомотетии описанной и вписанной окружностей (см. рис.). Докажем, что K – искомый радикальный центр.
Первый Так как инверсия с центром A' и радиусом A'B меняет местами прямую BC и описанную окружность Ω треугольника ABC, точка A1 переходит в A, а A2 – в точку A'' пересечения прямой A'A2 с описанной окружностью. Следовательно, точки A, A1, A2 и A'' лежат на одной окружности.
Степень точки K относительно описанной окружности треугольника AA1A2 равна – KA2·KA'' = – r/R AA'·KA'' = r/R s(K), где s(K) – степень точки K относительно Ω.
Очевидно, степени точки K относительно описанных окружностей треугольников BB1B2 и CC1C2 будут такими же, то есть K – радикальный центр трёх окружностей.
Второй Пусть A', B', C' – середины дуг BC, CA, AB. Тогда треугольник A'B'C' переводится в A2B2C2 гомотетией с коэффициентом r/R и центром K, то есть KA2 : A'A2 = KB2 : B'B2 = KC2 : C'C2 = k : 1. Для точек прямой A'A2 разность степеней относительно описанной окружности треугольника AA1A2 и вписанной окружности треугольника ABC является линейной функцией. В точке A2 эта функция равна нулю,
а в точке A' – r², поскольку A'A1·A'A = A'B² = A'I² (первое равенсто следует из подобия треугольников A'A1B и A'BA, а второе – из леммы о трезубце – см. задачу 53119). Значит, в точке K эта разность равна – kr². Другие аналогичные разности в точке K также равны – kr², откуда и следует требуемое