В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Сколько четырёхугольников на рисунке

Показать ответ
Ответ:
vladosik6448
vladosik6448
20.05.2020 15:16

1) Рассмотрим сечение, проходящее через центры сфер. 

 Отрезок, соединяющий центры, перпендикулярен диаметру сечения. Точкой пересечения они делятся пополам и образуют прямоугольный треугольник с катетами 5 и 12. Гипотенуза этого треугольника - искомый радиус. Треугольник с катетами 5 и 12 из Пифагоровых троек (прямоугольные треугольники с целочисленными сторонами), следовательно, R=13 (можно решить по т.Пифагора с тем же результатом). 

           * * *

2) Центр шара, вписанного в двугранный угол, равноудален от его сторон, и, следовательно, лежит на биссекторной плоскости, т.е. на плоскости, делящей этот двугранный угол пополам. 

Искомое расстояние - диагональ  квадрата со сторонами, равными радиусу шара ( биссектриса СО его прямого угла - см. рисунок), 

СО=r:sin45°=√2


Две одинаковые сферы пересекаются по окружности диаметром 10. расстояние между их центрами равно 24.
0,0(0 оценок)
Ответ:
doghatashavava
doghatashavava
10.02.2022 17:08
Это очень просто всё.
Для начала надо найти высоту BM к основанию AC. M - середина AC.
Ясно, что она "режет" треугольник на два "египетских" (со сторонами 9,12,15), то есть равна 12.
Эта высота к тому же медиана и биссектриса. Все точки в задаче лежат на ней.
1) поэтому от основания до точки пересечения медиан G будет
MG = 12/3 = 4;
точка пересечения биссектрис I находится так
BI/IM = AB/AM = 15/9; => MI = BM*9/(15 + 9) = 12*3/8 = 9/2;
отсюда
IG = MI - MG = 1/2;
2) тут есть множество решить. Мне нравится рассуждать так. Если продлить AM до пересечения с описанной окружностью в точке B1, то
AM*MC = BM*MB1; 9^2 = 12*MB1; MB1 = 27/4; BB1 = 12 + 27/4 = 75/4;
Это диаметр описанной окружности (центр O).  Радиус OB = 75/8;
Поэтому MO = 12 - 75/8 = (96 - 75)/8 = 21/8;

как-то так, проверяйте. Полезно помнить, что в остроугольных треугольниках отношение r/R близко к 2 (у равностороннего точно равно 2); в данном случае
r = 9/2; R = 75/8; r/R = 12/25;
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота