Сколько кг краски потребуется для покраски ( с учетом пола и потолка) помещения размерами 12 х 5 х 3 метра если расход краски на 1 м^2 составляет 250 г
Пусть D — середина ребра SA. По теореме о трёх перпендикулярах прямые SC и АС перпендикулярны. Медиана CD прямоугольного треугольника ACS равна половине гипотенузы AS. Медиана BD прямоугольного треугольника ASВ также равна половине гипотенузы AS. Значит, BD = CD.
б) Пусть F — середина ребра ВС, М — середина ребра SC, тогда FM — средняя линия треугольника CBS. Значит, , прямые FM и BS параллельны, то есть FM — перпендикуляр к плоскости основания пирамиды, поэтому отрезок FM перпендикулярен отрезку АС.
DM — средняя линия треугольника ASC, поэтому , а прямые DM
и АС параллельны, значит отрезок DM перпендикулярен отрезкам FM и ВС, следовательно DM — перпендикуляр к плоскости грани CBS.
Таким образом, угол DFM — это угол между прямой DF и плоскостью грани CBS. По условию задачи BS=AC, поэтому MF = DM, значит,
Назовем трапецию ABCD начиная с левого края большего основания, двигаясь по часовой стрелке.Так как центр окружности лежит на большем основании, это значит, что трапеция равнобедренная => большее основание является диаметром окружности. Проведем GO перпендикулярно AD. Получим угол AGD=90 градусов, как угол опирающийся на диаметр. Рассмотрим треугольник AGD -прямоугольный. Пусть AG=x,тогда и GD=x. По теореме Пифагора: 400=2 => х=10 . Рассмотрим треугольник AGO - прямоугольный. По теореме Пифагора: GO =10. GO равно высоте трапеции. Получаем S=(BC+AD)GO/2= (0,6*20+20)*10/2=160
Пусть D — середина ребра SA. По теореме о трёх перпендикулярах прямые SC и АС перпендикулярны. Медиана CD прямоугольного треугольника ACS равна половине гипотенузы AS. Медиана BD прямоугольного треугольника ASВ также равна половине гипотенузы AS. Значит, BD = CD.
б) Пусть F — середина ребра ВС, М — середина ребра SC, тогда FM — средняя линия треугольника CBS. Значит, , прямые FM и BS параллельны, то есть FM — перпендикуляр к плоскости основания пирамиды, поэтому отрезок FM перпендикулярен отрезку АС.
DM — средняя линия треугольника ASC, поэтому , а прямые DM
и АС параллельны, значит отрезок DM перпендикулярен отрезкам FM и ВС, следовательно DM — перпендикуляр к плоскости грани CBS.
Таким образом, угол DFM — это угол между прямой DF и плоскостью грани CBS. По условию задачи BS=AC, поэтому MF = DM, значит,
Следовательно, угол DFM = 45°.
ответ: 45°