Когда мы складываем вектора, мы образуем треугольник. (но вектора можно наложить друг на друга, а стороны треугольника - нет)
Значит, чтобы сумма векторов была наибольшей нужно, чтобы угол лежащий напротив него был наибольшим, То есть чтобы вектора были сонаправлены. (Наибольшая возможная угловая сумма треугольника 180°)
⇒ Мы просто из конца вектора A берём начало для вектора B и чертим два вектора (A и B) под углом 180°. (Допустим это вектор С)
С = А + В |A+B| = |C| |C| = | 29+18 | = 47
* Теперь просто из конца вектора A берем начало вектора В. Только теперь вектора противоположно направлены. И угол между ними 0°
С = А + В |A+(-B)| = |C| |C| = | 29+ (-18) | = | 29-18 | = 11
Когда мы складываем вектора, мы образуем треугольник. (но вектора можно наложить друг на друга, а стороны треугольника - нет)
Значит, чтобы сумма векторов была наибольшей нужно, чтобы угол лежащий напротив него был наибольшим, То есть чтобы вектора были сонаправлены. (Наибольшая возможная угловая сумма треугольника 180°)
⇒ Мы просто из конца вектора A берём начало для вектора B и чертим два вектора (A и B) под углом 180°. (Допустим это вектор С)
С = А + В |A+B| = |C| |C| = | 29+18 | = 47
* Теперь просто из конца вектора A берем начало вектора В. Только теперь вектора противоположно направлены. И угол между ними 0°
С = А + В |A+(-B)| = |C| |C| = | 29+ (-18) | = | 29-18 | = 11
ответ: 11≤ |A+B| ≤47
1) найдем сторону аb по теореме Пифагора :
2 2 2
pb = pa + ab
2 2 2 2
ab = корень (pb - pa ) = корень (17 - 8 ) = 15
2) найдем сторону ас по теореме Пифагора :
2 2 2 2
ас = корень ( pc - pa ) = корень (4корень13 - 8 ) = корень ( 16 * 13 - 64) = 12
3) найдем сторону cb по теореме Пифагора :
2 2 2 2
cb = корень (ab - ac ) = корень (15 - 12 ) = 9
4) Площадь прямоугольного треугольника = 1/2 произведений катетов найдем площади трех прямоугольних треугольников:
Sapb = 1/2 (pa * ab) = 1/2(8*15) = 60
Sapc = 1/2 (ap * ac) = 1/2(8*12) = 48
Sacb =1/2 (ac * cb) = 1/2(12*9)=54
найдем площадь треугольника Spcb = 1/2(pc * cb) = 1/2 (4корень13 * 9)
найдем площадь пирамиды Sapb + Sapc + Sacb + Spcb = 60 + 48 + 54 + 1/2(4корень13*9)