1) Так как, по условию параллелепипед прямой, тогда боковые ребра перпендикулярны основанию ⇒ ΔАСС₁ - прямоугольный (∠АСС₁ = 90°). Тогда мы используем по теореме Пифагора:
Точка равноудалённая от катетов образует внутри прямоугольного треугольника квадрат со стороной а, вершины которого - вершина прямого угла, точка на гипотенузе и две точки на катетах, от которых равноудалена заданная. Внутри прямоугольного образовались квадрат и два подобные между собой прямоугольных треугольника, которые подобны исходному треугольнику . пусть Один из катетов прямоугольного треугольника(1) - х и гипотенузой - 40 см, тогда соответствующий катет прямоугольного треугольника(2) - а см и гипотенузой - 30 см. Составим систему уравнений: Тогда один катет исходного прямоугольного треугольника - х+а=56 см. Второй катет по теореме Пифагора: = 1764, второй катет равен
Дано:
ABCDA₁B₁C₁D₁ - прямоугольный параллелепипед
ABCD - параллелограмм
АВ = 6 м, AD = 8 м, АС = 12 м, BB₁ = CC₁ = 5 м
----------------------------------------------------------------------------
Найти:
AC₁ - ? B₁D - ?
1) Так как, по условию параллелепипед прямой, тогда боковые ребра перпендикулярны основанию ⇒ ΔАСС₁ - прямоугольный (∠АСС₁ = 90°). Тогда мы используем по теореме Пифагора:
АС₁² = АС² + СС₁² ⇒ АС₁ = √АС² + СС₁² - Теорема Пифагора
AC₁ = √(12 м)² + (5 м)² = √144 м² + 25 м² = √169 м² = 13 м
2) Так как сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его сторон, то в основании ABCD определим длину диагонали BD:
BD² + AC² = 2×(АВ² + ВС²).
BD² + (12 м)² = 2×((6 м)² + (8 м)²)
BD² + 144 м² = 2×(36 м² + 64 м²)
BD² + 144 м² = 2×100 м²
BD² + 144 м² = 200 м²
BD² = 200 м² - 144 м² ⇒ BD² = 56 м² ⇒ BD = √56 м² ⇒ BD = √56 м
3) Из прямоугольного ΔВ₁ВD (∠B₁BD = 90°) определим, по теореме Пифагора гипотенузу B₁D:
B₁D² = BB₁² + BD² ⇒ B₁D = √BB₁² + BD² - Теорема Пифагора
B₁D = √(5 м)² + (√56 м)² = √25 м² + 56 м² = √81 м² = 9 м
ответ: AC₁ = 13 м; B₁D = 9 м
P.S. Рисунок показан внизу↓
Тогда один катет исходного прямоугольного треугольника - х+а=56 см. Второй катет по теореме Пифагора: = 1764, второй катет равен