Обозначим KM и MT как 2x и 5x соответственно ,тогда AC=2KT=14x (по свойству средней линии треугольника). Пусть BH=y, тогда HC=y+9; BT=(BH+HC)/2=(2y+9)/2 (KT-средняя линия), HT=BT-BH=(2y+9)/2-y=4,5(см). Так как KT - средняя линия треугольника ABC, то MT ║ AC, то есть ∆MHT~∆AHC (это можно обосновать равенством соответственных углов при параллельных прямых), коэфф.подобия k=MT/AC=5x/14x=5/14 => HT/HC=5/14 <=> 4,5/(y+9)=5/14. Решая это уравнение, получим,что y=BH=3,6 (см), HC=y+9=12,6 (см), BC=BH+HC=3,6+12,6=16,2(см). ответ: 16,2.
Примем а = 1. Поместим куб в систему координат вершиной В в начало и ребром ВА по оси ОХ. а) Определяем координаты точек: А(4;0;0), Р(2;4;0), А1(4;0;4), С(0;4;0). Находим координаты середин отрезков A1С и АР (точки Е и К соответственно): Е(2;2;2), К(3;2;0). Расстояние между серединами отрезков A1С и АР равно: ЕК = √(1²+0²+2²) = √5. С учетом коэффициента "а" ЕК = а√5.
4) Если скалярное произведение двух векторов равно нулю, то угол между ними составляет 90 градусов. По условию вектор b направлен по оси ОZ (его координаты {0; 0; -5}). Поэтому любая точка в плоскости ХОУ составляет прямой угол с вектором b. ответ: М ∈ ХОУ.
Пусть BH=y, тогда HC=y+9;
BT=(BH+HC)/2=(2y+9)/2 (KT-средняя линия), HT=BT-BH=(2y+9)/2-y=4,5(см).
Так как KT - средняя линия треугольника ABC, то MT ║ AC, то есть ∆MHT~∆AHC
(это можно обосновать равенством соответственных углов при параллельных прямых), коэфф.подобия k=MT/AC=5x/14x=5/14 =>
HT/HC=5/14 <=> 4,5/(y+9)=5/14. Решая это уравнение, получим,что y=BH=3,6 (см),
HC=y+9=12,6 (см), BC=BH+HC=3,6+12,6=16,2(см).
ответ: 16,2.
Поместим куб в систему координат вершиной В в начало и ребром ВА по оси ОХ.
а) Определяем координаты точек:
А(4;0;0),
Р(2;4;0),
А1(4;0;4),
С(0;4;0).
Находим координаты середин отрезков A1С и АР (точки Е и К соответственно): Е(2;2;2), К(3;2;0).
Расстояние между серединами отрезков A1С и АР равно:
ЕК = √(1²+0²+2²) = √5.
С учетом коэффициента "а" ЕК = а√5.
4) Если скалярное произведение двух векторов равно нулю, то угол между ними составляет 90 градусов.
По условию вектор b направлен по оси ОZ (его координаты {0; 0; -5}).
Поэтому любая точка в плоскости ХОУ составляет прямой угол с вектором b.
ответ: М ∈ ХОУ.