исходя из этих данных можно решить только в случае, если исходный треугольник мре - равнобедренный, с равными сторонами мр и ре.тогда все легко.ра - является в данном случае и биссекриссой и высотой.и у нас 2 прямоугольных треугольника мра и аре, в которых ма=ае=в/2 (т.к. высота в равнобедренном треугольнике делит основание пополам).собствено дальше все решение основано на свойствах прямог. треугольника, а именно.мр - это гипотенуза мра, и равнамр = ма * синус (бетта/2)=в/2 *синус (бетта/2)а ра - это катет того же прямоуг треугольника, и он равен ра=ма/тангенс (бетта/2)=в/2 / тангенс (бетта/2)
но если треугольник мре - произвольный, то боюсь решить не получится, хотя мне кажется он все-таки равнобедренный.удачи
исходя из этих данных можно решить только в случае, если исходный треугольник мре - равнобедренный, с равными сторонами мр и ре.тогда все легко.ра - является в данном случае и биссекриссой и высотой.и у нас 2 прямоугольных треугольника мра и аре, в которых ма=ае=в/2 (т.к. высота в равнобедренном треугольнике делит основание пополам).собствено дальше все решение основано на свойствах прямог. треугольника, а именно.мр - это гипотенуза мра, и равнамр = ма * синус (бетта/2)=в/2 *синус (бетта/2)а ра - это катет того же прямоуг треугольника, и он равен ра=ма/тангенс (бетта/2)=в/2 / тангенс (бетта/2)
но если треугольник мре - произвольный, то боюсь решить не получится, хотя мне кажется он все-таки равнобедренный.удачи
1. Верные утверждения про параллелограмм:
a. Противоположные стороны параллелограмма равны
c. Противоположные углы параллелограмма равны
d. Сумма углов параллелограмма равна 360∘
e. Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник
h. Точка пересечения диагоналей параллелограмма находится на равных расстояниях от противоположных вершин параллелограмма
2. Верные утверждения про прямоугольник:
a. Углы прямоугольника равны
b. Диагонали прямоугольника равны
c. Биссектриса угла прямоугольника отсекает от него равнобедренный треугольник
f. Точка пересечения диагоналей прямоугольника находится на равных расстояниях от его противоположных сторон
g. Точка пересечения диагоналей прямоугольника находится на равных расстояниях от его вершин
h. Квадрат является прямоугольником
3. Верные утверждения про ромб:
c. Биссектриса угла ромба является его диагональю
d. Точка пересечения диагоналей ромба находится на равных расстояниях от всех четырёх его сторон
e. Точка пересечения диагоналей ромба находится на равных расстояниях от его противоположных сторон
g. У всех ромбов одинаковый угол между диагоналями
h. Диагонали разбивают ромб на четыре равных треугольника
i. Квадрат является ромбом
j. Ромб, у которого равны диагонали, является квадратом
4. Верные утверждения про равнобокую трапецию:
a. В равнобокой трапеции есть равные углы
b. Диагонали равнобокой трапеции равны
e. Точка пересечения диагоналей равнобокой трапеции находится на равных расстояниях от её боковых сторон
g. Диагонали разбивают равнобокую трапецию на четыре треугольника, два из которых равны
h. Диагонали разбивают равнобокую трапецию на четыре треугольника, два из которых равнобедренные