На первую задачу ответ 36 кубометров. Решение: Найдём диагональ основания. Она равна кв. корню из суммы квадратов сторон (теорема Пифагора) и равна 5 метрам. Данная диогональ образует с диагональю паралелипипеда угол в 30 градусов. получается прямоугольный треугольник с одним из углов в 30 градусов. Катет, противолежащий углу в 30 градусов равен половине гиппотенузы. Значит высота треугольника 3 метра. Объём соответственно равен 3*4*3=36 кубометров
На вторую задачу ответ 4/кв.кор(3) Меньшую диагональ можно найти по теореме косинусов. X=2^2+3-2*2*кв.кор(3)*cos(30)=4+3-3=4 Площать параллелограмма равна произведению сторон на синус угла между ними S=2*кв.кор(3)*0.5=кв.кор(3) Объём пирамиды - одна треть произведения высоты на площадь основания V=(4*кв.кор(3))/3=4/кв.кор(3)
Углы треугольника составляют 40, 60 и 80 градусов (т.к. 2х+3х+4х=180 => 9x=180 => x=20). Пусть вершины треугольника обозначены АВС, центр окружности - О. Отрезок ОА является биссектрисой угла ВАС, ОВ делит пополам АВС, и ОС - соответственно ВСА. Поэтому угол ОАВ=20=ОАС, ОВС=ОВА=30, ОСА=ОСВ=40.
Угол АОВ (под ним видна сторона АВ) равен 130. (АОВ=180-ОАВ-ОВА=180-20-30) Угол АОС (под ним видно сторона АС) равен 120. (АОС=180-ОАС-ОСА=180-20-40) Угол ВОС (под ним видна сторона ВС) равен 110. (АОВ=180-ОВС-ОСВ=180-30-40)
На первую задачу ответ 36 кубометров.
Решение:
Найдём диагональ основания.
Она равна кв. корню из суммы квадратов сторон (теорема Пифагора) и равна 5 метрам.
Данная диогональ образует с диагональю паралелипипеда угол в 30 градусов.
получается прямоугольный треугольник с одним из углов в 30 градусов.
Катет, противолежащий углу в 30 градусов равен половине гиппотенузы.
Значит высота треугольника 3 метра.
Объём соответственно равен 3*4*3=36 кубометров
На вторую задачу ответ 4/кв.кор(3)
Меньшую диагональ можно найти по теореме косинусов.
X=2^2+3-2*2*кв.кор(3)*cos(30)=4+3-3=4
Площать параллелограмма равна произведению сторон на синус угла между ними
S=2*кв.кор(3)*0.5=кв.кор(3)
Объём пирамиды - одна треть произведения высоты на площадь основания
V=(4*кв.кор(3))/3=4/кв.кор(3)
Углы треугольника составляют 40, 60 и 80 градусов (т.к. 2х+3х+4х=180 => 9x=180 => x=20).
Пусть вершины треугольника обозначены АВС, центр окружности - О. Отрезок ОА является биссектрисой угла ВАС, ОВ делит пополам АВС, и ОС - соответственно ВСА. Поэтому угол ОАВ=20=ОАС, ОВС=ОВА=30, ОСА=ОСВ=40.
Угол АОВ (под ним видна сторона АВ) равен 130. (АОВ=180-ОАВ-ОВА=180-20-30)
Угол АОС (под ним видно сторона АС) равен 120. (АОС=180-ОАС-ОСА=180-20-40)
Угол ВОС (под ним видна сторона ВС) равен 110. (АОВ=180-ОВС-ОСВ=180-30-40)