И примем во внимание, что получающиеся трапеции подобны не исходной.
Если трапеции ALFD и LBCF подобны, то a/LF = LF/b.
Отсюда LF = √(ab).
Таким образом, отрезок разбивающий трапецию на две подобные трапеции, имеет длину равную среднему геометрическому длин оснований.
---
Делим трапецию:
1 отрезок между основаниями исходной: х²=2*8=16 х=√16=4
Второй отрезок между первым и основанием исходной трапеции у²=4*8=32 у =√32=4√2
Третий отрезок - идет под меньшим основанием z²=2*4=8 z=2√2
---------------------------
Отрезки в рисунке идут в таком порядке
z, x, y
---------------
Коэффициент подобия между этими четырьмя трапециями попарно ( смежными) равен
4:2√2=2:√2=2√2:√2·√2=2√2:2=√2
k=√2
Площади подобных фигур относяся как квадрат коэффициента их подобия.
Для этих трапеций это
(√2)²=2 Площадь второй по величине относится к нижней -большей- как 1:2=1/2 Третьей ко второй 1/2:2=1/4 и последней 1/8 сложим площади 1/2+1/4+1/8 =( 4+2+1)/8=7/8
7/8 < 1 Площадь самой большой из этих четырёх трапеций больше суммы площадей остальных трёх
прямые а и в принадлежат плоскости бета. Если прямая а пересекает плоскость альфа, то плоскость вета и плоскость альфа пересекаются по прямой., как имеющие одну общую точку. Эта прямая пересечения плоскостей принадлежит обеим плоскостям и пересекает одну из паралелльных прямых плоскости бета. Прямая, пересекающая одну из паралелльных прямых, пересекает параллельные ей прямые.
Прямые в и с пересекаются в точке О. Если бы прямая в имела еще одну точку пересечения с плоскостью альфа, то она бы принадлежала ей и плоскости альфа и бета пересеклись по прямой в. Плоскости пересекаются по прямой с, значит прямая в пересекается с прямой альфа только в одной точке. В нашем случае принадлежащей прямой с
Обязательно смотрим рисунок.
И примем во внимание, что получающиеся трапеции подобны не исходной.
Если трапеции ALFD и LBCF подобны, то a/LF = LF/b.
Отсюда LF = √(ab).
Таким образом, отрезок разбивающий трапецию на две подобные трапеции, имеет длину равную среднему геометрическому длин оснований.
---
Делим трапецию:
1 отрезок между основаниями исходной:
х²=2*8=16
х=√16=4
Второй отрезок между первым и основанием исходной трапеции
у²=4*8=32
у =√32=4√2
Третий отрезок - идет под меньшим основанием
z²=2*4=8
z=2√2
---------------------------
Отрезки в рисунке идут в таком порядке
z, x, y
---------------
Коэффициент подобия между этими четырьмя трапециями попарно ( смежными) равен
4:2√2=2:√2=2√2:√2·√2=2√2:2=√2
k=√2
Площади подобных фигур относяся как квадрат коэффициента их подобия.
Для этих трапеций это
(√2)²=2
Площадь второй по величине относится к нижней -большей- как 1:2=1/2
Третьей ко второй 1/2:2=1/4
и последней
1/8
сложим площади
1/2+1/4+1/8 =( 4+2+1)/8=7/8
7/8 < 1
Площадь самой большой из этих четырёх трапеций больше суммы площадей остальных трёх
прямые а и в принадлежат плоскости бета. Если прямая а пересекает плоскость альфа, то плоскость вета и плоскость альфа пересекаются по прямой., как имеющие одну общую точку. Эта прямая пересечения плоскостей принадлежит обеим плоскостям и пересекает одну из паралелльных прямых плоскости бета. Прямая, пересекающая одну из паралелльных прямых, пересекает параллельные ей прямые.
Прямые в и с пересекаются в точке О. Если бы прямая в имела еще одну точку пересечения с плоскостью альфа, то она бы принадлежала ей и плоскости альфа и бета пересеклись по прямой в. Плоскости пересекаются по прямой с, значит прямая в пересекается с прямой альфа только в одной точке. В нашем случае принадлежащей прямой с