Если угол при основании 45 градусов, то прямоугольный треугольник, где высота трапеции стороной этого треугольника, а бедро трапеции гипотенузой - равнобедренный, так как второй угол этого прямоугольного треугольника тоже 90-45=45 градусов. Значит, кусочек нижнего основания трапеции, отсекаемый ее высотой равен тоже 3 см. Проведем вторую высоту трапеции, тогда получим, что высоты делят большое основание на три части - две по 3 см и одна - как малое основание 5 см. Следовательно, большое основание имеет размер 3+5+3=11 см.
Рассмотрим треугольники AKE и ABC. У них \angle A∠A - общий. \angle AKE=\angle ABC∠AKE=∠ABC как соответственные. Следовательно, треугольники AKE и АВС подобны (по двум углам). Из подобия треугольников следует пропорциональность соответствующих сторон
AE : CE = 9 : 5
Рассмотрим треугольники AKE и ABC. У них \angle A∠A - общий. \angle AKE=\angle ABC∠AKE=∠ABC как соответственные. Следовательно, треугольники AKE и АВС подобны (по двум углам). Из подобия треугольников следует пропорциональность соответствующих сторон
\dfrac{AE}{AC}=\dfrac{AK}{AB}~~\Rightarrow~~~ \dfrac{9}{14}=\dfrac{AK}{42}~~\Rightarrow~~ \boxed{AK=27}
AC
AE
=
AB
AK
⇒
14
9
=
42
AK
⇒
AK=27
Аналогично, \Delta PEC\sim \Delta ABCΔPEC∼ΔABC (по двум углам).
\dfrac{CE}{AC}=\dfrac{PE}{AB}~~\Rightarrow~~\dfrac{5}{14}=\dfrac{PE}{42}~~\Rightarrow~~ \boxed{PE=15}
AC
CE
=
AB
PE
⇒
14
5
=
42
PE
⇒
PE=15
\dfrac{BC}{PC}=\dfrac{AB}{PE}~~\Rightarrow~~~\dfrac{BP+PC}{PC}=\dfrac{42}{15}~~\Rightarrow~~ \boxed{\dfrac{BP}{PC}=\dfrac{9}{5}}
PC
BC
=
PE
AB
⇒
PC
BP+PC
=
15
42
⇒
PC
BP
=
5
9