Дан прямоугольный треугольник АВС с прямым углом С. Биссектриса угла В пересекает катет АС в точке М. Известно, что АМ = 8√3 см, а ∠BAC=∠MBC. Найдите площадь треугольника АВС
Находим отрезок АД по свойству биссектрисы: АД/АС = ВД/ВС. АД = (АС*ВД)/ВС = 5*(6-АД)/7, 7АД = 30 - 5АД, 12АД = 30, АД = 30/12 = 2,5. Так как у треугольников АСД и АСВ общая высота, то их площади пропорциональны основаниям, то есть отрезкам АД и АВ. S(АСД)/S(АСВ) = 2,5/6. Находим площадь треугольника АВС: S(АСВ) = √(p(p-a)(p-b)(p=c)). Полупериметр р = (а+в+с)/2 = (7+5+6)/2 =18/2 = 9. S(АСВ) = √(9*2*4*3) = 6√6. S(АСД) = (2,5*S(АСВ))/6 = (2,5*6√6)/6 = 2,5√6 = 5√6/2.
P=16 см Угол ABC=120° Т.к все стороны ромба равны, то AB=BC=CD=DA=P/4=16/4=4 см Угол BCD=60°(т.к (360°-120°-120°):2=60° по сумме углов четырёхугольника) Т.к диагонали ромба являются и биссектрисами, то Угол ABD= Угол DBC = Угол CDB = Угол BDA = 120°/2=60° Треугольник BOC= Треугольник COD= Треугольник ODA=Треугольник OBA (по стороне и двум прилежащим к ней углам) Рассмотрим Треугольник BOC: Он прямоугольный, т.к диагонали ромба взаимноперпендикулярны Т.к OC - биссектриса угла BCD, то Угол BCO=60°/2=30° Катет, лежащий против Угла 30°, равен половине гипотенузы BO=BC/2=4/2=2 см Воспользуемся теоремой Пифагора c²=a²+b² BC²=BO²+OC² 4²=2²+OC² OC²=16-4 OC²=12 OC= Т.к диагонали ромба точкой пересечения делятся пополам, то BD=2*BO=2*2=4 CA=2*CO=2*= ответ: Диагонали равны 4 см и см
АД/АС = ВД/ВС.
АД = (АС*ВД)/ВС = 5*(6-АД)/7,
7АД = 30 - 5АД,
12АД = 30,
АД = 30/12 = 2,5.
Так как у треугольников АСД и АСВ общая высота, то их площади пропорциональны основаниям, то есть отрезкам АД и АВ.
S(АСД)/S(АСВ) = 2,5/6.
Находим площадь треугольника АВС:
S(АСВ) = √(p(p-a)(p-b)(p=c)).
Полупериметр р = (а+в+с)/2 = (7+5+6)/2 =18/2 = 9.
S(АСВ) = √(9*2*4*3) = 6√6.
S(АСД) = (2,5*S(АСВ))/6 = (2,5*6√6)/6 = 2,5√6 = 5√6/2.
ответ: площадь треугольника ADC равна: в)5√6/2
Угол ABC=120°
Т.к все стороны ромба равны, то
AB=BC=CD=DA=P/4=16/4=4 см
Угол BCD=60°(т.к (360°-120°-120°):2=60° по сумме углов четырёхугольника)
Т.к диагонали ромба являются и биссектрисами, то
Угол ABD= Угол DBC = Угол CDB = Угол BDA = 120°/2=60°
Треугольник BOC= Треугольник COD= Треугольник ODA=Треугольник OBA (по стороне и двум прилежащим к ней углам)
Рассмотрим Треугольник BOC:
Он прямоугольный, т.к диагонали ромба взаимноперпендикулярны
Т.к OC - биссектриса угла BCD, то Угол BCO=60°/2=30°
Катет, лежащий против Угла 30°, равен половине гипотенузы
BO=BC/2=4/2=2 см
Воспользуемся теоремой Пифагора
c²=a²+b²
BC²=BO²+OC²
4²=2²+OC²
OC²=16-4
OC²=12
OC=
Т.к диагонали ромба точкой пересечения делятся пополам, то
BD=2*BO=2*2=4
CA=2*CO=2*=
ответ: Диагонали равны 4 см и см