* * СОЧ ГЕМЕТРИЯ 7КЛАСС 1. AC - касательная к окружности. Хорда АВ равна радиусу окружности. Найдите угол между касательной и хордой. [ ] 2. Равнобедренный треугольник АВС (AB=BC) вписан в окружность. Угол при вершине В равен 40°. Найдите величины дуг АС, АВ и ВС. [ ] 3. В окружности с центром в точке О к хорде АВ, равной радиусу окружности, перпендикулярно проведен диаметр CD. Диаметр CD и хорда АВ пересекаются в точке Т. Длина отрезка АВ равна 8 см. a) постройте рисунок по условию задачи; b) определите длину хорды АВ; c) определите длину диаметра CD; d) найдите периметр треугольника ОАВ. [ ] 4. В прямоугольном треугольнике AOB (zO = 90°) AB = 12, zABO = 30°. С центром в точке А проведена окружность. Каким должен быть ее радиус, чтобы: a) окружность касалась прямой ВО; b) окружность не имела общих точек с прямой ВО; c) окружность имела две общие точки с прямой BO? [ ] 5. Постройте треугольник АВС по следующим данным: AB = 5 см, AC = 6 см, ZA=40°. В полученном треугольнике постройте биссектрису угла В. Рекомендации к выполнению: Постройте данные с линейки с делениями и транспортира Треугольник строить с односторонней линейки, циркуля и карандаша Вс линии оставьте на чертеже [ ]
а)Основанием пирамиды служит квадрат, проекцией бокового ребра в √17 см, есть половина диагонали основания, которая равна а√2=4√2, а ее половина 2√2 см, тогда высота пирамиды может быть найдена как √((√17)²-(2√2)²)=√(17-8)=√9=3/см/
б)Площадь полной поверхности состоит из площади боковой поверхности и площади основания. Площадь основания равна 4²=16/см²/, а площадь боковой поверхности - это сумма четырех площадей треугольников со сторонами √17см; √17см и 4см. ЕСли провести из вершины пирамиды высоту на сторону основания, то можно найти эту апофему. Она равна √((√17)²-(4/2)²)=√(17-4)=
√13, умножая теперь апофему ( это высота боковой грани правильной пирамиды) на основание, равное 4, деля на два и умножая на 4, получим площадь четырех равных треугольников,т.е. площадь боковой поверхности.
4*(4*√13 )/2= 8√13/см²/, а площадь полной поверхности равна
а)Основанием пирамиды служит квадрат, проекцией бокового ребра в √17 см, есть половина диагонали основания, которая равна а√2=4√2, а ее половина 2√2 см, тогда высота пирамиды может быть найдена как √((√17)²-(2√2)²)=√(17-8)=√9=3/см/
б)Площадь полной поверхности состоит из площади боковой поверхности и площади основания. Площадь основания равна 4²=16/см²/, а площадь боковой поверхности - это сумма четырех площадей треугольников со сторонами √17см; √17см и 4см. ЕСли провести из вершины пирамиды высоту на сторону основания, то можно найти эту апофему. Она равна √((√17)²-(4/2)²)=√(17-4)=
√13, умножая теперь апофему ( это высота боковой грани правильной пирамиды) на основание, равное 4, деля на два и умножая на 4, получим площадь четырех равных треугольников,т.е. площадь боковой поверхности.
4*(4*√13 )/2= 8√13/см²/, а площадь полной поверхности равна
а)Основанием пирамиды служит квадрат, проекцией бокового ребра в √17 см, есть половина диагонали основания, которая равна а√2=4√2, а ее половина 2√2 см, тогда высота пирамиды может быть найдена как √((√17)²-(2√2)²)=√(17-8)=√9=3/см/
б)Площадь полной поверхности состоит из площади боковой поверхности и площади основания. Площадь основания равна 4²=16/см²/, а площадь боковой поверхности - это сумма четырех площадей треугольников со сторонами √17см; √17см и 4см. ЕСли провести из вершины пирамиды высоту на сторону основания, то можно найти эту апофему. Она равна √((√17)²-(4/2)²)=√(17-4)=
√13, умножая теперь апофему ( это высота боковой грани правильной пирамиды) на основание, равное 4, деля на два и умножая на 4, получим площадь четырех равных треугольников,т.е. площадь боковой поверхности.
4*(4*√13 )/2= 8√13/см²/, а площадь полной поверхности равна
16+8√13 =8*(2+√13) / см²/
Объяснение:
а)Основанием пирамиды служит квадрат, проекцией бокового ребра в √17 см, есть половина диагонали основания, которая равна а√2=4√2, а ее половина 2√2 см, тогда высота пирамиды может быть найдена как √((√17)²-(2√2)²)=√(17-8)=√9=3/см/
б)Площадь полной поверхности состоит из площади боковой поверхности и площади основания. Площадь основания равна 4²=16/см²/, а площадь боковой поверхности - это сумма четырех площадей треугольников со сторонами √17см; √17см и 4см. ЕСли провести из вершины пирамиды высоту на сторону основания, то можно найти эту апофему. Она равна √((√17)²-(4/2)²)=√(17-4)=
√13, умножая теперь апофему ( это высота боковой грани правильной пирамиды) на основание, равное 4, деля на два и умножая на 4, получим площадь четырех равных треугольников,т.е. площадь боковой поверхности.
4*(4*√13 )/2= 8√13/см²/, а площадь полной поверхности равна
16+8√13 =8*(2+√13) / см²/
Подробнее - на -