СОЧ ГЕОМЕТРИЯ 9 КЛАСС 2. При каких значениях х и у точки А (x; 8) и В (–3; у) симметричны относительно начала координат? A) х = – 3, у = –8 В) х = – 3, у = 8 C) х = 3, у = –8 D) х = 3, у = 8
[1]
3. Точка О — центр правильного восьмиугольника АВСDЕFКМ. Укажите образ стороны EF при повороте вокруг точки О по часовой стрелке на угол 90°. А) AВ B) ВС С) CD D) MA
4. Какая фигура имеет центр симметрии и ось симметрии? A) равносторонний треугольник B) параллелограмм C) равнобокая трапеция D) прямая
7. В равнобедренном треугольнике АВС основание АС и боковая сторона АВ соответственно равны 6 см и 12 см. Биссектриса AD угла А при основании треугольника делит сторону ВС на отрезки ВD и DС. Найдите длины этих отрезков. (фото прикреплено)
8. Диагонали трапеции ABCD пересекаются в точке О. Точка пересечения диагоналей трапеции делит диагональ AC на отрезки длиной 13 см и 9 см. Найдите основания трапеции AD и ВС, если их разность равна 16 см. Выполните чертеж по условию задачи.
9. Постройте трапецию, гомотетичную данной, с центром в точке (–2;0) и коэффициентом равным . (фото тоже прикреплено)
Пусть первый катет-х, второй-у, c-гипотенуза по т. пифагора (квадрат гипотенузы равен сумме квадратов катетов) с²=у²+х² система х-у=14 26²=у²+х² из первого уравнения выразим х х=14+у подставим во второе 26²=у²+(14+у)² 676=у²+14²+2*14*у+у² 676=2у²+196+28у 676-2у²-196-28у=0 480-2у²-28у=0 (делим все на (-2)) у²+14у-240=0- это приведенное уравнение по т.виета y₁+y₂=-14 y₁*y₂=-240 y₁=-24 (не подходит, <0) y₂=10 cm подставим то, что у нас получилось в подстановку х=14+10 х=24 cm площадь (произведение катетов деленное на 2) S=xy/2 S=24*10/2 S=120 cm²
Итак, поехали. см. рисунок. Там сделали допостроения и обозначения. СВ=х АС=х-7 по т. Пифагора (х-7)²+х²=13² отсюда х=12 (отрицательное значение ж не подходит) х-7=5 Катеты будут 5 и 12.Напишем их зеленым на рисунке, чтоб удобнее было. А теперь самое интересное. Центр опис.окр. лежит на серединных перпендикулярах. Что и обозначено. Т.е. СМ=12/2=6 Дальше, ∠СОК - центральный для ∠СВК, значит он = 2α, тогда угол СОН в 2 раза меньше ( треугольник СОК равнобедр. с высотой ОН) и равен α. Обозначим зеленым. Тогда ∠ОСМ=90-α-45=45-α теперь из Δ ОСМ имеем R=CM/cos(45-α) R=6/cos(45-α) подставляя формулу косинуса разности получаем cos(45-α)=cos45cosα+sin45sinα=√2/2(cosα+sinα)
но из первоначального треугольника, когда нашли его катеты, имеем cosα=12/13 sinα=5/13 a cosα+sinα=12/13+5/13=17/13 cos(45-α)=17√2/26
по т. пифагора (квадрат гипотенузы равен сумме квадратов катетов)
с²=у²+х²
система
х-у=14
26²=у²+х²
из первого уравнения выразим х
х=14+у
подставим во второе
26²=у²+(14+у)²
676=у²+14²+2*14*у+у²
676=2у²+196+28у
676-2у²-196-28у=0
480-2у²-28у=0 (делим все на (-2))
у²+14у-240=0- это приведенное уравнение
по т.виета
y₁+y₂=-14
y₁*y₂=-240
y₁=-24 (не подходит, <0)
y₂=10 cm
подставим то, что у нас получилось в подстановку
х=14+10
х=24 cm
площадь (произведение катетов деленное на 2)
S=xy/2
S=24*10/2
S=120 cm²
см. рисунок. Там сделали допостроения и обозначения.
СВ=х
АС=х-7
по т. Пифагора (х-7)²+х²=13²
отсюда х=12 (отрицательное значение ж не подходит)
х-7=5
Катеты будут 5 и 12.Напишем их зеленым на рисунке, чтоб удобнее было.
А теперь самое интересное.
Центр опис.окр. лежит на серединных перпендикулярах. Что и обозначено. Т.е. СМ=12/2=6
Дальше, ∠СОК - центральный для ∠СВК, значит он = 2α, тогда угол СОН в 2 раза меньше ( треугольник СОК равнобедр. с высотой ОН) и равен α. Обозначим зеленым.
Тогда ∠ОСМ=90-α-45=45-α
теперь из Δ ОСМ имеем R=CM/cos(45-α)
R=6/cos(45-α)
подставляя формулу косинуса разности получаем
cos(45-α)=cos45cosα+sin45sinα=√2/2(cosα+sinα)
но из первоначального треугольника, когда нашли его катеты, имеем
cosα=12/13
sinα=5/13
a cosα+sinα=12/13+5/13=17/13
cos(45-α)=17√2/26
и R=6/(17√2/26)=78√2/17
вроде так.