Ck ∩ ab = l по теореме Чевы bp / pc * mc / am * al / lp = 1 bp * al / (pc * lp) = 1 bp / pc = lb / al => по теореме, обратной теореме Фалеса lp || ac также bk / km = 4 => по теореме Фалеса bl / la = bp / pc = 4 Sabk / Sabm = 4 / 5, тк bk / bm = 4 / 5 Sabk = (4 / 5) Sabm Δbkp ~ Δbmc по двум сторонам и углу между ними => Sbkp / Sbmc = 16 / 25 Skpcm = Sbmc - Sbkp = Sbmc - (16 / 25) * Sbmc = (9 / 25) Sbmc Sabm = Sabc, тк BM - медиана => Sabk / Skpcm = 4 * 25 / (5 * 9) = 20 / 9 ответ: 20 / 9.
№1. Если т. М симметрична точке К относительно точки Р, значит т .Р - середина отрезка КМ. Используем формулы нахождения координат середины отрезка: х = (х₁ + х₂) :2, х₁ = 2х - х₂ = 2· 1 - 9 = 2 - 9 = -7
по теореме Чевы
bp / pc * mc / am * al / lp = 1
bp * al / (pc * lp) = 1
bp / pc = lb / al => по теореме, обратной теореме Фалеса lp || ac
также bk / km = 4 => по теореме Фалеса bl / la = bp / pc = 4
Sabk / Sabm = 4 / 5, тк bk / bm = 4 / 5
Sabk = (4 / 5) Sabm
Δbkp ~ Δbmc по двум сторонам и углу между ними => Sbkp / Sbmc = 16 / 25
Skpcm = Sbmc - Sbkp = Sbmc - (16 / 25) * Sbmc = (9 / 25) Sbmc
Sabm = Sabc, тк BM - медиана =>
Sabk / Skpcm = 4 * 25 / (5 * 9) = 20 / 9
ответ: 20 / 9.
Объяснение:
№1. Если т. М симметрична точке К относительно точки Р, значит т .Р - середина отрезка КМ. Используем формулы нахождения координат середины отрезка: х = (х₁ + х₂) :2, х₁ = 2х - х₂ = 2· 1 - 9 = 2 - 9 = -7
аналогично у₁ = 2у - у₂ = 2 · (-6) - (-5) = - 12 + 5 = - 7
z₁ = 2z - z₂ = 2 · 3 - 1 = 6 - 1 = 5 ответ: (-7; -7;5)
№2. т. О(0; 0; 0) - центр гомотетии, по определению гомотетии ОК = 0,5ОА. Значит т. К(-2 :2; 4: 2; -6: 2) = (-1; 2; -3), т.к. 0,5 это половина
ответ((-1; 2; -3)
№3. Для определения перпендикулярности достаточно доказать, что скалярное произведение векторов равно нулю.
→ →
а · в = а₁ в₁ + а₂в₂ + а₃в₃ = -2· 6 + 1·(-5) + 3 ·7 = -12 -5 +21 = 4.
Т.к. скалярное произведение не равно нулю, то вектора не перпендикулярны.
ответ: нет