Соч з по геометрии 8кл 1. Найти площадь прямоугольника, если стороны равны 7,1 см и
2,4 см. ( )
2. Найти площадь треугольника, если его стороны равны 21, 29, 18
см. ( )
3. Найти площадь трапеции, если основания трапеции равны 14
см и 24 см, а высота равна 8 см. ( )
4. Найти площадь ромба, если его диагонали равны 15 дм и 30 дм.
( )
5. Найти площадь треугольника, если его две стороны равны 4см
и см, а угол между ними 30° ( )
6. Основания трапеции относятся как 3: 5. Площадь трапеции
равна 180 см. Высота равна 10 см. Найти основания трапеции
( )
Найдем углы параллелограмма АВСД исходя из их отношений 1:5 и из того, что одна из диагоналей ВД будет являться высотой. Есть только один вариант найти угол А=С,приняв его за Х, тогда другой угол Д=5Х*=90*-Х*+90*; Откуда 6Х=180*>>Х=30*;Значит угол между высотой ВД и стороной СД равен 60*; В таком случае, приняв за 1 сторону СД,Получим высоту ВД равную 1/2( лежащий против угла 30*), а другую сторону ВС равную \/3/2; Найдем большую диагональ АС, она будет равна (1/2)^2+(\/3/2)^2=\/(1/4+3)=\/13/2; Имеем:диагональ АС=\/13/2; и диагональ ВД=1/2; их отношение будет как \/13:1; ответ:\/13:1
72°; 54°; 54°.
Объяснение:
Дано:
Равнобедренный треугольник МРК.
АВ ║МР, точка А ∈ МК, точка В ∈ КР.
∠К = 72°, ∠ М = 54°
Найти: углы треугольника АВК.
Решение.
1. Так как Δ МРК является равнобедренным, то его углы при основании равны:
∠Р = ∠М = 54°.
2. Так как АВ ║ МР, то Δ ABK подобен Δ МРК, в силу чего:
∠АКВ треугольника АВК равен ∠К треугольника МРК:
∠АКВ = ∠К = 72°;
∠КАВ треугольника АВК равен ∠М треугольника МРК:
∠КАВ = ∠М = 54°;
∠КВА треугольника АВК равен ∠Р треугольника МРК:
∠КВА = ∠Р = 54°.
ответ: углы треугольника АВК равны 72° (угол при вершине), 54° и 54° (углы при основании).