Угол А=углу В, следовательно, ∆ АВС равнобедренный. АС=ВС.
1.
Одна из формул площади треугольника
S=a•b•sinα:2=, где α - угол между сторонами. В данном случае это угол С.
Из суммы углов треугольника
угол С=180°-2•75°=30°
Примем ВС=АС=х
Тогда S=(х•х•1/2):2
х²:4=36
х²=36•4
х=√(36•4)=6•2
BC=12
------------
2.
Из решения выше найдено: АС=ВС, ∠С=30°
S=a•h:2, где а - сторона, h - высота, проведенная к ней.
Проведем высоту АН. Примем её равной а.
∆ АСН прямоугольный, АН противолежит углу 30°. Тогда гипотенуза АС=2а⇒
S=а•2а:2=36⇒
а=√36=6.
АС=2•6=12
ВС=АС=12 см
площадь треугольника равна половине произведения его основания на высоту. ПРоведём высоту, назовём BH
по формуле получается S=1/2*BH*AC, где BH-высота, а AC-основание треугольника
мы видим, что образовались два прямоугольных треугольника-ABH и CBH
Ещё мы знаем, что угол C=30 градусов (180-(75+75)
а против угла в 30 гр. лежит катет равный половине гипотенузы.
Т.к. AC=BC, а BH=1/2BC, то составим уравнение
S=1/2*BH*AC АС=ВС=х ВН=х/2
36=1/2*х*х/2
х в квадрате = 144 х=12
Угол А=углу В, следовательно, ∆ АВС равнобедренный. АС=ВС.
1.
Одна из формул площади треугольника
S=a•b•sinα:2=, где α - угол между сторонами. В данном случае это угол С.
Из суммы углов треугольника
угол С=180°-2•75°=30°
Примем ВС=АС=х
Тогда S=(х•х•1/2):2
х²:4=36
х²=36•4
х=√(36•4)=6•2
BC=12
------------
2.
Из решения выше найдено: АС=ВС, ∠С=30°
S=a•h:2, где а - сторона, h - высота, проведенная к ней.
Проведем высоту АН. Примем её равной а.
∆ АСН прямоугольный, АН противолежит углу 30°. Тогда гипотенуза АС=2а⇒
S=а•2а:2=36⇒
а=√36=6.
АС=2•6=12
ВС=АС=12 см