А)Треугольник равнобедренный - значит боковые стороны равны а высота перпендикулярна основанию. Тогда высота рассекает основание пополам, и образуются два равных прямоугольных треугольника. В них катетами является высота прямоугольного треугольника и половина основания (7,5 см) а гипотенузой боковая сторона (25 см). По теореме Пифагора вычисляем катет b, за который приняли высоту: c2=a2+b2; b=√ c2-a2. b=√25(квадрат) – 7,5(квадрат); b=√625-56,25; b=√568,75; b=23,8 см. Высота треугольника равна 23,8 см. б) S=a*b; S=25*15; S=375 см2
Сечения шара двумя параллельными плоскостями, между которыми лежит центр шара, имеют площади 144π см, 25π см. Найти площадь поверхности шара, если расстояние между параллельными плоскостями равен 17 см
* * *
Сечение шара плоскостью - круг.
Расстояние между плоскостями равно длине перпендикуляра, опущенного с одной плоскости на другую.
Центр шара и центры сечений параллельными плоскостями лежат на одной прямой.
На схематическом рисунке приложения – сечение шара через его центр О и центры сечений.
АК- радиус меньшего сечения, СН - радиус большего сечения, СК - расстояние между центрами сечений, ОА=ОН - радиус шара.
Квадрат радиуса меньшего сечения АК²=S1:π=25
Квадрат радиуса большего сечения СН²=S2:π=144
Обозначим расстояние между центром шара и большим сечением СО=х, тогда между центром шара и меньшим сечением ОК=17-х.
б) S=a*b; S=25*15; S=375 см2
Сечения шара двумя параллельными плоскостями, между которыми лежит центр шара, имеют площади 144π см, 25π см. Найти площадь поверхности шара, если расстояние между параллельными плоскостями равен 17 см
* * *
Сечение шара плоскостью - круг.
Расстояние между плоскостями равно длине перпендикуляра, опущенного с одной плоскости на другую.
Центр шара и центры сечений параллельными плоскостями лежат на одной прямой.
На схематическом рисунке приложения – сечение шара через его центр О и центры сечений.
АК- радиус меньшего сечения, СН - радиус большего сечения, СК - расстояние между центрами сечений, ОА=ОН - радиус шара.
Квадрат радиуса меньшего сечения АК²=S1:π=25
Квадрат радиуса большего сечения СН²=S2:π=144
Обозначим расстояние между центром шара и большим сечением СО=х, тогда между центром шара и меньшим сечением ОК=17-х.
Из ∆ АОК по т.Пифагора
R²=АК²+ОК²
Из СОН
R²=CH²+CO²
Приравняем оба значения R²:
АК²+ОК²=CH²+CO²
25+289-34х+х²=144+х*
34х=170
х=5
R²=ОН²=25+144=169
Формула площади поверхности шара
S=4πR²
S=4π•169=676π см²