Солнечный свет отражался от зеркала, как показано на рисунке собирался в точку о и попадал в глаза смотрящему. известно, что расстояние от точки о до наблюдателя составляет 2 м, а расстояние до дерева составляет 6 м,рост наблюдателя - 180 см, а угол α=β угол альфа это угол падения луча, а бета угол
отражения. найди высоту дерева
б) ∠A-∠B=55*. Обозначим угол В через х. Тогда угол А равен х+55.
Сумма углов в четырехугольнике равна 360*. Составим уравнение:
(х+х+55)*2=360*;
4х=360-110;
4х=250;
x=62,5* - угол В;
62,5+55=117,5* - угол А.
В параллелограмме противоположные стороны и углы равны
в) ∠А+∠С=142*; ∠А=∠С = 142:2=71*;
∠В=∠D=180*-71*=109*;
г) ∠А = 2∠В; ∠В обозначим через х, то ∠А=2х;
В сумме все углы дают 360*. Составим уравнение:
(х+2х)*2=360;
6х=360;
х=60* - угол В.
60*2=120* - угол А.
д) ∠CAD = 16, ∠ACD = 37°;
∠B=∠D=180*-(16+37)=127*;
∠A=∠C=(360*-127*2)/2=53*.
Как-то так... :))) Удачи! Надеюсь разберетесь...
По условиям задачи треугольник ABC равнобедренный, значит его биссектриса так же является и медианой и высотой. Раз она медиана, то она делит основание AC на две равные части AK и CK.
Треугольники ABK и CBK равны по двум сторонам и углу между ними - AK=CK, BK у них одна и та же, а углы AKB и CKB тоже равны между собой(они оба равны 90° потому что биссектриса в равнобедренном треугольнике является также и высотой - перпендикуляром из вершины к основанию). Следовательно и периметры этих треугольников равны - 12 см
Сумма периметров этих треугольников ABK+CBK= AB+BK+AK+BC+BK+CK =24 см, периметр ABC= AB+BC+AC =20 см, следовательно можно наложить их друг на друга и сократить совпадающие участки - AB, DC и AC=AK+CK.
(AB+BK+AK+BC+BK+CK)-(AB+BC+AC) = 24-20
2BK = 4
BK = 2