Если в условии имеется в виду, что отрезок каждой длины можно использовать в четырехугольнике только один раз, то ни одного 4-угольника составить нельзя. Действительно, пусть длины сторон четырехугольника равны 2^k, 2^l, 2^m, 2^n, где 0≤k<l<m<n≤6. Тогда должно выполняться 2^k+2^l+2^m>2^n, т.к. длина ломаной всегда больше расстояния между ее конечными точками. Но 2^k+2^l+2^m≤2^(m-2)+2^(m-1)+2^m= =2^(m-2)*(1+2+4)=7*2^(m-2)<2^(m+1)≤2^n. Т.е. получается, что сумма трех меньших сторон четырехугольника меньше большей стороны. Противоречие. Т.е. четырехугольника с различными сторонами с длинами из этого списка не существует.
Если допустить, что некоторые длины сторон могут повторяться, то различных четырехугольников можно составить бесконечно много, т.к. даже со сторонами 1,1,1,1 существует бесконечное число различных ромбов.
По первому признаку подобия треугольников имеем, что данные равнобедр.треуг. подобны. Коэффициент их подобия равен как отношению соотв.сторон, так и отношению периметров. Найдем боковые стороны первого треугольника. Высота к основанию является также медианой, значит по теореме Пифагора боковая сторона равна кореньиз(64+36)=10. Периметр первого треугольника равен 10+10+16=36. Коэффициент подобия k=54/36=3/2=1,5. Значит боковые стороны второго равнобедр.треугольника равны 10*1,5=15 см, а основание равно 16*1,5=24 см.
=2^(m-2)*(1+2+4)=7*2^(m-2)<2^(m+1)≤2^n. Т.е. получается, что сумма трех меньших сторон четырехугольника меньше большей стороны. Противоречие. Т.е. четырехугольника с различными сторонами с длинами из этого списка не существует.
Если допустить, что некоторые длины сторон могут повторяться, то различных четырехугольников можно составить бесконечно много, т.к. даже со сторонами 1,1,1,1 существует бесконечное число различных ромбов.