Трапеция АВСД, ВС=9, АД=15, проводим среднюю линию трапеции МН, которая параллельна ВС и АД, точки О и Р пересечение средней линии с диагоналями, для треугольника АВС МО=средней линии треугольника (теорема Фалеса, если параллельные прямые отсекают на одной стороне угла равные отрезки, то и на другой стороне угла они отсекают равные отрезки) , т.е АВ=МВ, то АО=ОС, МО=1/2ВС =9/2=4,5, То же самое для треугольника ВСД, РН - средняя линия =1/2ВС=9/2=4,5, Средняя линия трапеции МН=(АД+ВС)/2=(15+9)/2=12 ОР (отрезок соединяющий середины диагоналей)=МН-МО-РН=12-4,5-4,5=3
Угол АОС - центральный, равен длине дуги, на которую он опирается. Опирается на АС, а она относится к Углу В, градусная мера которого 60. значит длина дуги АС = 60*2=120. <AOC=120. В сумме углы A + B + C =180 (свойство треугольника). Угол В нам дан, значит мы можем найти сумму двух других: A+C=180-B A+C=120. Нам дано отношение 5 к 7, но это отношение дуг. Значит умножим на 2 сумму углов, чтобы найти сумму длин дуг и разделим на на эти коэффициенты. 5k+7k=120*2 12k=240 k=20 Нам нужно найти угол А, а это половина дуги BC. BC=5k BC=50*20=100 100\2=50=угол А Тоже самое с углом С AB=7k AB=7*20=140 140\2=70=угол С
Сделаем проверку, <A+<B+<C=180 50+60+70=180. Всё верно
ОР (отрезок соединяющий середины диагоналей)=МН-МО-РН=12-4,5-4,5=3
В сумме углы A + B + C =180 (свойство треугольника). Угол В нам дан, значит мы можем найти сумму двух других:
A+C=180-B
A+C=120.
Нам дано отношение 5 к 7, но это отношение дуг. Значит умножим на 2 сумму углов, чтобы найти сумму длин дуг и разделим на на эти коэффициенты.
5k+7k=120*2
12k=240
k=20
Нам нужно найти угол А, а это половина дуги BC. BC=5k
BC=50*20=100
100\2=50=угол А
Тоже самое с углом С
AB=7k
AB=7*20=140
140\2=70=угол С
Сделаем проверку, <A+<B+<C=180
50+60+70=180. Всё верно
ответ: <A=50, <C=70. <AOC=120