Точки А, В и С принадлежат одной прямой. Прямые АА1, ВВ1 и СС1 параллельны, поэтому лежат в одной плоскости, а точки А1, В1, С1 - на линии пересечения этой плоскости с плоскостью альфа, т.е. на прямой А1В1. Из т.В проведем прямую параллельно В1А1 до пересечения с продолжением АА1 в точке А2. Продолжение СС1 пересечет ВА2 в точке С2. Четырехугольник ВВ1А1А2 -прямоугольник. СС2=А1А2=ВВ1=9 см. Следовательно, в треугольнике АВА2 сторона АА2=18+9=27 см, СС2 как проведенная из середины АВ параллельно АА2 - его средняя линия и равна АА2:2=13,5 см. СС1=СС2-С1С2=13,5-9=4,5 см
Пусть в ΔABC, AK — высота, AN — биссектриса ∠A, AE — медиана.
Из точки A к прямой BC проведены перпендикуляр AK (высота) и две наклонные. Cледовательно точка N принадлежит либо KB, либо KE.
Точка N совпадает с K, тогда AN = AK < AE.
Точка N совпадает с E, тогда AN = AE > AK.
Точка N лежит между точками K и E, тогда AK < AN < AE (так как ее проекция NK меньше EK — проекции AE).
По доказанному в задаче № 24, AN не может быть больше AE, т.е. точка N не может лежать между E и С Что и требовалось доказат
Точки А, В и С принадлежат одной прямой. Прямые АА1, ВВ1 и СС1 параллельны, поэтому лежат в одной плоскости, а точки А1, В1, С1 - на линии пересечения этой плоскости с плоскостью альфа, т.е. на прямой А1В1. Из т.В проведем прямую параллельно В1А1 до пересечения с продолжением АА1 в точке А2. Продолжение СС1 пересечет ВА2 в точке С2. Четырехугольник ВВ1А1А2 -прямоугольник. СС2=А1А2=ВВ1=9 см. Следовательно, в треугольнике АВА2 сторона АА2=18+9=27 см, СС2 как проведенная из середины АВ параллельно АА2 - его средняя линия и равна АА2:2=13,5 см. СС1=СС2-С1С2=13,5-9=4,5 см