Меньший катет лежит против меньшего угла (он будет равен 90-60=30 градусов).
Катет, лежащий против угла 30 градусов, равен половине гипотенузы; значит меньший катет равен 0,5x.
Из условия следует: x+0,5x=26,4
1,5x=26,4
x=17,6 см
ответ: 17,6 см
или так
Т.к. это прямоугольный треугольник то углы его будут равны 60 градусов, 90 и 30. Меньший катет лежит напротив угла в 30 градусов. По правилу он равен половине гипотенузы. Поэтому задачу можно решить через уравнение. Пусть х - это катет , тогда гипотенуза равна 2х, а их сумма по условию равна 26,4 см. Составим уравнение.
ответ:17,6 см
Объяснение:
Пусть x - гипотенуза.
Меньший катет лежит против меньшего угла (он будет равен 90-60=30 градусов).
Катет, лежащий против угла 30 градусов, равен половине гипотенузы; значит меньший катет равен 0,5x.
Из условия следует: x+0,5x=26,4
1,5x=26,4
x=17,6 см
ответ: 17,6 см
или так
Т.к. это прямоугольный треугольник то углы его будут равны 60 градусов, 90 и 30. Меньший катет лежит напротив угла в 30 градусов. По правилу он равен половине гипотенузы. Поэтому задачу можно решить через уравнение. Пусть х - это катет , тогда гипотенуза равна 2х, а их сумма по условию равна 26,4 см. Составим уравнение.
х+2х = 26,4
3х= 26,4
х = 8,8
1. 8,8 * 2 = 17,6 см
ответ: 30°
Объяснение:
1. Расстояние от точки до прямой -- это перпендикуляр из этой точки к прямой.
CH ⊥ AB
Расстояние от точки до плоскости -- это перпендикуляр из этой точки к плоскости.
CD ⊥ (ABD)
2. CD ⊥ (ABD), DH c (ABD) ⇒ CD ⊥ DH (прямая, перпендикулярная плоскости, перпендикулярна любой прямой в этой плоскости)
3. CH -- наклонная, CD ⊥ (ABD) ⇒ DH -- проекция CH на плоскость (ABD).
4. CH -- накл., DH -- проекц., CH ⊥ AB ⇒ DH ⊥ AB (теорема о трёх перпендикулярах)
5. Угол между плоскостями -- это угол между перпендикулярами, проведёнными к их общему ребру.
(ABC) ∩ (ABD) = AB -- ребро
CH ⊥ AB, CH c (ABC); DH ⊥ AB, DH c (ABD) ⇒ ∠((ABC), (ABD)) = ∠DHC -- искомый
6. Пусть CD = x, тогда CH = 2x. Рассмотрим прямоугольный ΔCDH.
Катет в два раза меньше гипотенузы ⇒ ∠CHD = 30° (теорема об угле 30° в п/у Δ)