1) Докажем по определению: "Параллелограммом называется четырехугольник у которого противоположные стороны попарно параллельны".
по аксиоме любые три точки всегда лежат в одной плоскости. Значит четвертая точка не лежит в данной плоскости. Если все 4 точки соединить между собой, то получится треугольная пирамида (тетраэдр) рассмотрим ΔАВС: Если Е и F - середины сторон АВ и ВС, то EF - средняя линия треугольника (по определению), следовательно EF || AC. аналогично для других треугольников: KM - средняя линия треугольника ADC значит КM || AC Если EF || AC и КM || AC, то EF || KM (закон транзитивности)
EK - средняя линия треугольника ADB, значит EK || BD MF- средняя линия треугольника CDB, значит MF || BD Если EK || BD и MF || BD, то EK || MF
Итак, EF || KM и EK || MF, следовательно EFKM-параллелограмм (по определению) - ч.т.д.
2) средняя линия треугольника равна половине основания KE=MF=BD/2=8/2=4 см KM=EF=AC/2=6/2=3 см Периметр (Р) - сумма длин всех сторон KE+MF+KM+EF=4+4+3+3=14 см Отв: 14 см
рішення: 1) В р / б трапеції кути при підставах рівні, значить якщо позначимо уг АДВ = уг СДВ = х градусів, тоді кут ДАВ = х * 2) АД || BC і ВД - січна, значить уг АДВ = уг ДВС = х * 3) В трапеції кути прилеглі до однієї бічній стороні в сумі 180 *, отримуємо: 2х + х + 90 = 180 3х = 90 х = 30 градусів, повертаємося до позначень, отримуємо: В трапеції АВСД уг А = уг Д = 60 *, уг В = уг С = 180-60 = 120 *. Відповідь: 60;60;120;120
"Параллелограммом называется четырехугольник у которого противоположные стороны попарно параллельны".
по аксиоме любые три точки всегда лежат в одной плоскости.
Значит четвертая точка не лежит в данной плоскости. Если все 4 точки соединить между собой, то получится треугольная пирамида (тетраэдр)
рассмотрим ΔАВС:
Если Е и F - середины сторон АВ и ВС, то EF - средняя линия треугольника (по определению), следовательно EF || AC.
аналогично для других треугольников:
KM - средняя линия треугольника ADC значит КM || AC
Если EF || AC и КM || AC, то EF || KM (закон транзитивности)
EK - средняя линия треугольника ADB, значит EK || BD
MF- средняя линия треугольника CDB, значит MF || BD
Если EK || BD и MF || BD, то EK || MF
Итак, EF || KM и EK || MF, следовательно EFKM-параллелограмм (по определению) - ч.т.д.
2) средняя линия треугольника равна половине основания
KE=MF=BD/2=8/2=4 см
KM=EF=AC/2=6/2=3 см
Периметр (Р) - сумма длин всех сторон
KE+MF+KM+EF=4+4+3+3=14 см
Отв: 14 см
АВСД - р/б трапеция
АВ=СД
уг АВД=90*
уг АДВ = уг СДВ
углы трапеции -?
Решение:
1) В р/б трапеции углы при основаниях равны, значит если обозначим уг АДВ = уг СДВ = х градусов, тогда угол ДАВ = х*
2) АД || BC и ВД - секущая, значит уг АДВ = уг ДВС = х*
3) В трапеции углы прилежащие к одной боковой стороне в сумме 180*, получаем:
2х+х+90=180
3х=90
х=30 градусов, возвращаемся к обозначениям, получаем:
В трапеции АВСД
уг А=уг Д=60*, уг В=уг С= 180-60=120*.
ответ:60*; 60*; 120*; 120*.
Дано:
АВСД - р / б трапеція
АВ = СД уг АВД = 90 *
уг АДВ = уг СДВ
кути трапеції -?
рішення:
1) В р / б трапеції кути при підставах рівні, значить якщо позначимо уг АДВ = уг СДВ = х градусів, тоді кут ДАВ = х *
2) АД || BC і ВД - січна, значить уг АДВ = уг ДВС = х *
3) В трапеції кути прилеглі до однієї бічній стороні в сумі 180 *, отримуємо: 2х + х + 90 = 180
3х = 90
х = 30 градусів, повертаємося до позначень, отримуємо:
В трапеції АВСД
уг А = уг Д = 60 *, уг В = уг С = 180-60 = 120 *.
Відповідь: 60;60;120;120