Составьте общее уравнение прямой проходящей через точки А(0;4) и В(-2;0) и выполните чертеж. 2. Изобразите окружность, соответствующую уравнению (x +2)2 + (y −4)2 =16 .
Определите взаимное расположение окружности (x +2)2 + (y −4)2 =16 и прямой у = 3.
3. Точки А(-6;0), В(-4; 6), С(6;6), D(4;0) – вершины четырехугольника ABCD. Докажите, что данный четырехугольник является прямоугольником и найдите его площадь.
4. Постройте угол А, если известно, что
ОТТ
в параллелограмме противолежащие стороны равны
значит 32-6-6=20 (сумма 2-х противолежащих сторон) вторая сторона =10 см
проведём высоту, один из углов=150 гр,значит второй соседний равен 30 гр, рассмотрим прямоугольный треугольник, гипотенуза(боковая сторона =6) высота-это катет,лежащий против угла в 30 гр,значит, высота равна 1/2 гипотенузы=3
площадь параллелограмма=произведению основания на высоту,проведённую к этому основанию, значит площадь равна 3*10=30 см^2
ответ:30 см^2
а)Дано:
гипотенуза=29
меньший катет=20
больший-?
прямоугольный угол=90 градусов
Найти:
больший катет-?
2 острых угла-?
Решение:
1)По теореме Пифагора:
(29)^2=(20)^2+(x)^2
x^2=(29-20)(29+20)
x=_/49*9=3*7=21
2)По теореме sin(синусов):
(29/sin90):(20/sinx)
sin90=1
20*1=sinx*29
sinx=20/29
sinx=0,6819
x=43 градусам
Значит другой острый угол =180-(90+43)=47 градусов
б)Дано:
1 катет=7 см
2 катет=5 см
прямой угол=90 градусов
Найти:
гипотенузу-?
2 острых угла-?
Решение:
1)По теореме Пифагора:
(5)^2+(7)^2=(x)^2
25+49=x^2
x^2=74
x=_/74
x=_/27*2
x=3_/2
2)sinа=(противолежащего):гипотенузе=5:3_/2=(5_/2)/6=1,4
sin b=(прилежащего катета):гипотенузе=7:3_/2=(7_/2)/6=sina=2,6