В прямоугольном треугольнике катет, лежащий против угла 30 градусов = 1/2 гипотенузы. Доказательство. Дано тр. АВС. Угол С- прямой Доказать: СВ = 1/2 АВ 1)Угол В = 180 - 90 - 30 = 60 гр.(по теореме о сумме углов треуг. 2) Проведём из вершины угла С медиану СF, которая равна по определению медиана, проведённая к гипотенузе равна половине гипотенузы, то треугольники CAF и CBF- равнобедренные. По доказанному CF=AF=BF Следовательно, у треуг. CFB углы при основании равны:∠B=∠BCF=60º.Так как сумма углов треугольника равна 180º, то в треугольнике BFC∠BFC =180º -(∠B+∠BCF)=60º.Поскольку все углы треугольника BFC равны, то этот треугольник — равносторонний.Значит, все его стороны равны и
1) Рассмотрим 2 треугольника: АВВ1, АОС1: - оба прямоугольные - уголВАО общий известно, что сумма острых углов прямоугольного треугольника величина постоянная (равна π/2), или: уголАВВ1+уголВАВ1=уголАОС1+уголС1АО(=π/2), очевидно: уголВАВ1≡уголС1АО(≡ВАО), уголАВВ1≡уголАВС, уголАОС1≡уголАОС⇒получаем: уголАВС+уголВАО=уголАОС+уголВАО, уголАВС=уголАОС, ч.т.д
или вот так: уголВСС1=уголОСВ1 (вертикальные при пересекающихся ОС1иВВ1)) Тогда π/2-уголВСС1=π/2-уголОСВ1, а из треугольников(прямоугольных) ΔВСС1, ΔОСВ1 получим, что эти углы равны тем которые нам надо сравнить: уголАВС=уголАОС, ч.т.д
2) это утверждение верно, только если АС=СВ, то есть нам дан равнобедренный тупоугольный треугольник.
гипотенузы.
Доказательство.
Дано тр. АВС. Угол С- прямой
Доказать: СВ = 1/2 АВ
1)Угол В = 180 - 90 - 30 = 60 гр.(по теореме о сумме углов треуг.
2) Проведём из вершины угла С медиану СF, которая равна по определению медиана, проведённая к гипотенузе равна половине гипотенузы, то треугольники CAF и CBF- равнобедренные. По доказанному CF=AF=BF
Следовательно, у треуг. CFB углы при основании равны:∠B=∠BCF=60º.Так как сумма углов треугольника равна 180º, то в треугольнике BFC∠BFC =180º -(∠B+∠BCF)=60º.Поскольку все углы треугольника BFC равны, то этот треугольник — равносторонний.Значит, все его стороны равны и
Рассмотрим 2 треугольника: АВВ1, АОС1:
- оба прямоугольные
- уголВАО общий
известно, что сумма острых углов прямоугольного треугольника величина постоянная (равна π/2), или:
уголАВВ1+уголВАВ1=уголАОС1+уголС1АО(=π/2),
очевидно: уголВАВ1≡уголС1АО(≡ВАО), уголАВВ1≡уголАВС, уголАОС1≡уголАОС⇒получаем:
уголАВС+уголВАО=уголАОС+уголВАО,
уголАВС=уголАОС, ч.т.д
или вот так:
уголВСС1=уголОСВ1 (вертикальные при пересекающихся ОС1иВВ1))
Тогда π/2-уголВСС1=π/2-уголОСВ1,
а из треугольников(прямоугольных) ΔВСС1, ΔОСВ1 получим, что эти углы равны тем которые нам надо сравнить:
уголАВС=уголАОС, ч.т.д
2) это утверждение верно, только если АС=СВ, то есть нам дан равнобедренный тупоугольный треугольник.