Составьте три уравнения прямых в системе координат. вот план,если что: 1.берем три точки в системе координат 2.построить треугольник 3.составить уравнения сторон треугольника 90 !
Пусть угол А - х, тогда угол B - тоже х, а угол Bad = x/2 рассмотрим треугольник АДБ - угол Б равен 180 градусов -( 110 градусов + x/2) рассмотрим треугольник АБС угол Б равен 180 - 2х потом вычитаем из первого уравнения второе, в правой части у нас ноль (углы Б сократились) в левой части 2x-110-x/2 иксы в правую часть градусы в левую часть переносим итого у нас получается 1,5х=110 градусов x=углу А= углу С= 73 и 1/3 градусов (в ответе переведи в десятичные 73,33) Угол б равен 180 градусов минус 2х = 33 и 1/3 градуса (33.33)
А задаче есть избыточные данные. то, что перпендикуляр к короткой стороне равен 8 см, позволяет найти нам длинную сторону, хотя её не спрашивают в задаче. А спрашивают расстояние от точки четверти диагонали к длинной стороне. Дополним параллелограмм синими линями, чтобы под большой диагональю образовался треугольник. в нём высота h может быть найдена из известной короткой стороны и угла между короткой и длинной сторонами h = 16*sin(30) = 8 см Прямоугольные треугольники, образованные нижней стороной параллелограмма, его длинной диагональю и синей высотой h и красным расстоянием z подобны. Коэффициент подобия 1/4, т.к. по условию полная диагональ - это 4 части (3+1) и короткий отрезок - одна часть Получается, что z = 1/4 h = 8/4 = 2 см
Дополним параллелограмм синими линями, чтобы под большой диагональю образовался треугольник.
в нём высота h может быть найдена из известной короткой стороны и угла между короткой и длинной сторонами
h = 16*sin(30) = 8 см
Прямоугольные треугольники, образованные нижней стороной параллелограмма, его длинной диагональю и синей высотой h и красным расстоянием z подобны.
Коэффициент подобия 1/4, т.к. по условию полная диагональ - это 4 части (3+1) и короткий отрезок - одна часть
Получается, что
z = 1/4 h = 8/4 = 2 см